Nom:

Prénom:

Groupe:

ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS

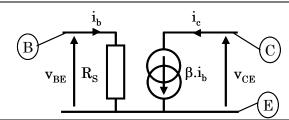
Cycle Initial Polytech Première Année Année scolaire 2008/2009

Epreuve d'électronique analogique N°3 (correction)

Mardi 12 mai 2009 Durée : 1h30

- Cours et documents non autorisés.
- □ Calculatrice de l'école autorisée.
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié:
 - d'indiquer votre nom, prénom et groupe.
 - d'éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:


Forme générale de la tension aux bornes de la capacité d'un circuit R.C:

$$V_C(t) = A.\exp\left(-\frac{t}{R.C}\right) + B$$

Modèle électrique équivalent de la diode lorsqu'elle est passante : VD = VS + RS.ID

Modèle électrique équivalent de la diode lorsqu'elle est bloquée : $V_D = 0$ et $I_D = 0$

Schéma électrique équivalent du transistor bipolaire NPN en régime de petit signal

I et V représentent des courants et tensions en statique ou en statique + dynamique i et v représentent des variations de courants et de tensions (donc en dynamique)

Dans cet exercice, on se propose d'étudier le circuit de la Figure (I.1) qui s'appelle un octaveur et qui permet de doubler la fréquence d'un signal. Son utilisation sur la voix humaine permet de l'amener à mis chemin entre la voix robot et "celle" du canard.

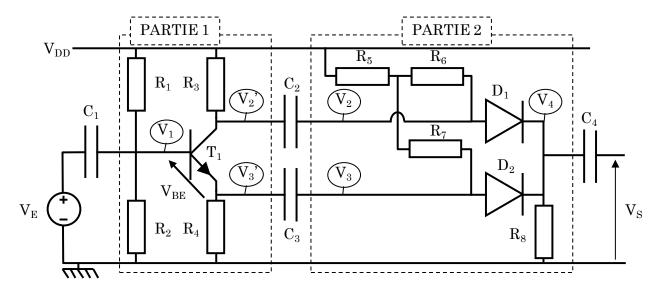


Figure I.1. Les valeurs des composants sont : R_1 = 22 kΩ, R_2 = 15 kΩ, R_3 = R_4 = 2,2 kΩ, R_5 = 39 kΩ, R_6 = R_7 = 100 kΩ, R_8 = 10 kΩ. Les capacités seront équivalentes à des fils aux fréquences considérées. Les trois transistors sont identiques : β = 100, V_{CEsat} = 0,2 V, pour la diode de base V_S = 0,6 V et R_S = 1 kΩ. On considérera que 1+ β ≈ β (soit I_C ≈ I_E). Les diodes D_1 et D_2 sont identiques avec V_{SD} = 1 V et R_{SD} = 10 Ω (indice D pour faire la différence avec la diode du transistor). La tension d'alimentation est V_{DD} = 15 V.

I.1. Etude de l'étage d'entrée (PARTIE 1) en régime statique

I.1.1. Donner l'expression et la valeur (E_{th} et R_{th}) du générateur de Thévenin équivalent au pont de base (R_1 , R_2 et V_{DD}) (0.5 pt)

$$E_{th} = V_{DD} \frac{R_2}{R_1 + R_2} = 6,08V$$
 et $R_{th} = \frac{R_1 + R_2}{R_1 + R_2} = 8,92k\Omega$

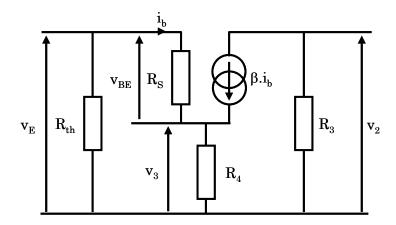
I.1.2. Donner l'expression et la valeur de V_{BE} , I_B , I_C et V_{CE} . Dans quel régime est polarisé le transistor T_1 ? (2.5 pts)

2

$$I_{B} = \frac{E_{th} - V_{S}}{R_{th} + R_{S} + \beta . R_{4}} = 23.8 \mu A$$

$$V_{BE} = V_S + I_B.R_S = 0.624V$$

$$I_C = \beta . I_B = 2,38 \text{mA}$$


$$V_{CE} = V_{DD} - I_{C} \cdot (R_3 + R_4) = 4,51V$$

VCE est supérieure à VCEsat et IB > 0 donc le transistor est en régime linéaire.

I.2. Etude de l'étage d'entrée (PARTIE 1) en régime dynamique

On considérera que l'on peut négliger l'impédance d'entrée de la PARTIE 2 devant R_3 et R_4 . On supposera aussi que les variations de V_E sont suffisamment faibles pour que le transistor reste en régime linéaire.

I.2.1. Donner le schéma équivalent en petit signal de la PARTIE 1 du circuit (1.5 pts)

I.2.2. Donner l'expression et la valeur du gain en tension $A_{V2} = \frac{\partial V_2}{\partial V_E}$. Simplifier cette expression en considérant les valeurs de Rs et R4. (1 pt)

$$i_b = \frac{v_E}{R_S + \beta . R_4}$$

$$v_2' = -\beta . R_3 . i_b$$

$$A_{V2} = \frac{-\beta.R_3.i_b}{i_b.(R_S + \beta.R_4)} = -\frac{\beta.R_3}{R_S + \beta.R_4} \approx -\frac{\beta.R_3}{\beta.R_4} = -1$$

I.2.3. Donner l'expression et la valeur du gain en tension $A_{V3} = \frac{\partial V_3}{\partial V_E}$ (1 pt)

$$v_3' = \beta . R_4 . i_b$$

$$A_{V3} = \frac{\beta.R_{3}i_{b}}{i_{b}.(R_{S} + \beta.R_{4})} = \frac{\beta.R_{4.}}{R_{S} + \beta.R_{4}} \approx \frac{\beta.R_{4}}{\beta.R_{4}} = 1$$

I.3. Etude du doubleur de fréquence (PARTIE 2) en régime statique (2 pts)

Les deux diodes D_1 et D_2 sont passantes mais à la limite du blocage (V_D proche de V_S). Donner les valeurs :

• du courant qui circule dans $D_1:I_{D1}=\frac{V_{DD}-V_{SD}}{2.R_5+R_6+R_{SD}+2.R_8}=70,7~\mu A$

3

- du courant qui circule dans $D_2 : I_{D2} = 70,7 \mu A$
- de la tension $V_2 = 2,41 \text{ V}$

- de la tension $V_3 = 2,41 \text{ V}$
- de la tension $V_4 = 2.R_8 I_{D1} = 1,41 V$

I.4. Etude du doubleur de fréquence (PARTIE 2) en régime dynamique

Sans le vérifier on admettra que l'application d'une tension v₂ (dynamique) négative permet de bloquer la diode D₁ et qu'une tension v₃ (dynamique) négative bloque D₂. On applique un signal sinusoïdale de période T_P, donné par :

$$V_{E} = 1.\sin\left(2\pi \frac{t}{T_{P}}\right) \quad \text{pour} \quad t \in [0; T_{P}]$$
 (I.1)

Pour les trois questions qui suivent, il faudra garder à l'esprit qu'il y a un étage (PARTIE 1) entre V_E et la PARTIE 2.

I.4.1. A t = 0.25.T_P, donner les valeurs : (2 pts)

- de la tension $v_2 = v_2' = -1V$
- de la tension $v_3 = v_3' = 1V$
- de la tension V₂ = 1,41 V (donc D₁ est bloquée)
- de la tension $V_3 = 3{,}41 \text{ V}$ (donc D_2 est passante)
- du courant qui circule dans $D_1 = 0$
- du courant qui circule dans $D_2 = \frac{V_3 V_S}{R_S + R_8} = 241 \ \mu A$
- de la tension $V_4 = 2,41 \text{ V}$

I.4.2. A t = 0.75.T_P, donner les valeurs : (2 pts)

- de la tension $v_2 = v_2' = 1V$
- de la tension $v_3 = v_3' = -1V$
- du courant qui circule dans $D_1 = 241 \mu A$
- du courant qui circule dans $D_2 = 0$
- de la tension $V_2 = 3{,}41 \text{ V}$ (donc D_1 est passante)
- de la tension V₃ = 1,41 V (donc D₂ est bloquée)
- de la tension $V_4 = 2,41 \text{ V}$

I.4.3. Tracer l'évolution temporelle de la tension V_4 sur la figure (I.2) où la tension V_E est déjà indiquée. On indiquera sur le graphique les instants qui correspondent aux diodes D_1 et D_2 passantes. (1 pt)

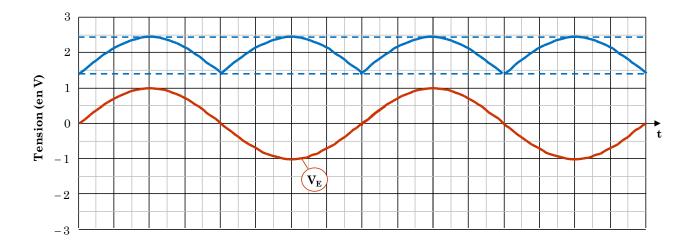


Figure I.2.

I.4.4. Quelle est la fréquence du signal V₄ en fonction de T_P ? (0.5 pt)

Fréquence = $2/T_P$

EXERCICE II : Détecteur de mensonges (6 pts)

Il existe plusieurs dispositifs (plus ou moins compliqués) permettant de détecter si une personne ment. On se propose ici d'étudier un circuit électrique très simple qui détecte une variation de la résistance de la peau. Pour la peau sèche, cette résistance est de 1 $M\Omega$ et elle peut être divisée par 10 pour une peau moite (très gros mensonge !). Le circuit que l'on va étudier est donné à la figure (II.1) et correspond à un oscillateur Abraham BLOCH (PARTIE 1) suivi d'un étage qui alimente le haut parleur (PARTIE 2). La PARTIE 2 ne sera pas étudiée.

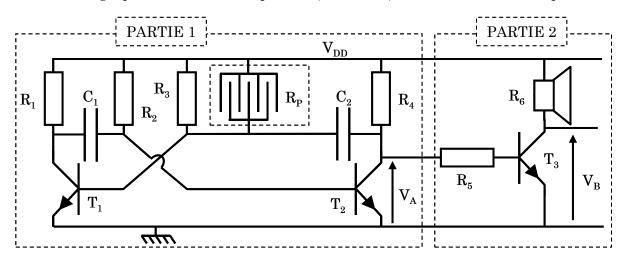


Figure II.1. $R_1 = R_4 = 1 \text{ k}\Omega$, $R_2 = 22 \text{ k}\Omega$, $R_3 = 10 \text{ M}\Omega$, $R_5 = 10 \text{ k}\Omega$, $R_6 = 25 \Omega$, $C_1 = 22 \text{ nF}$ et $C_2 = 1 \text{ nF}$. Les transistors T_1 et $T_2 : V_S = 0.6 \text{ V}$, $V_{CEsat} = 0 \text{ V}$. Pour le transistor $T_3 : \beta = 100$, $V_{CEsat} = 0 \text{ V}$, $V_{CEsat} = 0 \text{ V}$. On considérera que 1+ β ≈ β (soit $I_C \approx I_E$). La tension d'alimentation est $V_{DD} = 9 \text{ V}$.

La résistance de la peau, R_P , est "prélevée" avec un capteur constitué de fils distants de 1 à 2 mm. On considérera que R_P peut varier de 1 $M\Omega$ à 100 $k\Omega$ lorsque le doigt est posé sur le capteur sinon elle est infinie.

II.1. Donner les valeurs min et max de la tension V_A. (0.5 pt)

$$V_{Amin} = V_{CEsat} = 0 V$$

$$V_{Amax} = V_{DD} = 9 V$$

II.2. On considère qu'à l'instant t=0, le transistor T_1 devient passant et que par conséquent, T_2 se bloque. La tension de la base de T_2 devient alors égale à $0.6 - V_{DD}$ et la tension $V_A = V_{CEsat}$. Donner l'expression de l'évolution temporelle de la tension V_{BE2} du transistor T_2 en fonction de V_{DD} , V_S , R_2 et C_1 . (1.5 pts)

La forme générale de l'expression de V_{BE2} est :

$$V_{BE2}(t) = A. \exp\left(-\frac{t}{R_2.C_1}\right) + B$$

Avec
$$V_{BE2}(t=0) = 0.6 - V_{DD} = A + B$$
 et $V_{BE2}(t \rightarrow \infty) = V_{DD} = B$

Soit:
$$V_{BE2}(t) = (0.6 - 2V_{DD}) \cdot exp(-\frac{t}{R_2.C_1}) + VDD$$

II.3. La période totale du signal est donnée par :

$$T_P = T_{T1} + T_{T2}$$
 (II.1)

où T_{T1} correspond au temps durant lequel le transistor T_1 est passant et T_{T2} correspond au temps durant lequel le transistor T_2 est passant.

II.3.1. Le transistor T_2 reste bloqué tant que V_{B2} est inferieur à V_S . Donner l'expression de T_{T1} . (1 pt)

$$T_{T1} = R_2.C_1.ln \left(\frac{0.6 - V_{DD}}{0.6 - 2.V_{DD}} \right)$$

II.3.1. Donner la valeur de T_{T1}. (0.5 pt)

$$T_{T1} = 351 \ \mu s$$

II.4. En vous inspirant de la question (II.3), déterminer l'expression de T_{T2} puis de la période T_P . (1 pt)

6

$$T_{T2} = \frac{R_3.R_P}{R_3 + R_P}.C_2.ln\left(\frac{0.6 - V_{DD}}{0.6 - 2.V_{DD}}\right)$$

$$T_P = R_2.C_1.ln \left(\frac{0.6 - V_{DD}}{0.6 - 2.V_{DD}} \right) + \frac{R_3.R_P}{R_3 + R_P}.C_2.ln \left(\frac{0.6 - V_{DD}}{0.6 - 2.V_{DD}} \right)$$

II.5. Donner la valeur de la fréquence FP du signal lorsque : (1.5 pt)

- $R_P = \infty$ \Rightarrow $F_P = 131 \ Hz$ $(T_{T2} = 7,28 \ ms)$
- $\label{eq:RP} \bullet \quad R_P = 1 \ M\Omega \quad \Rightarrow \quad F_P = 986 \ Hz \quad (T_{T2} = 662 \ \mu s)$
- R_P = 100 $k\Omega$ \Rightarrow F_P = 2,36 kHz (T_{T2} = 72,1 μs)