Approximation de l'optique géométrique -rayon lumineux

Table des matières

1	Défi	nitions	2
2	Ray	ons lumineux	2
	2.1	Définition	2
	2.2	hypothèse fondamentale de l'optique géométrique	3
	2.3	Approximation de l'optique géométrique	3
	2.4	Propriétés des rayons lumineux	3
		2.4.1 Indépendance des rayons lumineux	3
		2.4.2 Principe de retour inverse de la lumière	4
3	Lois	de Descartes	4
	3.1	Définitions	4
	3.2	Lois de la réflexion	4
		3.2.1 Enoncé	4
		3.2.2 Formation algébrique ou vectorielle	5
	3.3	Deuxième loi de Descartes : Loi de réfraction	5
		3.3.1 Enoncé	5
		3.3.2 Formulation algébrique ou vectorielle	6
	3.4	Réfraction limite et réflexion totale	6
		3.4.1 Réfraction limite	6
		3.4.2 Réflexion totale	7
	3.5	Milieu d'indice variable : phénomène de mirage	7
4	Pris	me	8
	4.1	Définitions	8
	4.2	Marche d'un rayon : Lois du prisme	8
	4.3	Conditions d'émergence	9
	4.4	Variation de D en fonction de l'indice	0
	4.5	Dispersion d'un rayon polychromatique	0

(c) Boukaddid

L'optique est un domaine qui consiste à étudier les phénomènes lumineux, on distingue entre deux types :

- ► Optique géométrique : Traite les rayons lumineux et la formation d'image par un instrument optique
- ▶ Optique ondulatoire (physique) : Traite les phénomènes vibratoires : diffraction , interférence ...

1 Définitions

- ▶ Milieu linéaire : Les effets sont proportionnels aux causes
- Milieu homogène : Toutes les propriétés physiques sont identiques en tout point M du milieu
- ▶ Milieu isotrope : Toutes les les propriétés physiques sont identiques dans toutes les directions de l'espace (pas de direction préviligé) .
- ▶ Milieu transparant : pas d'absorption (l'intensité lumineuse reste constante)
- ► Indice de réfraction :

- $c = 3.10^8 m.s^{-1}$ la vitesse de la lumière dans le vide
- $\bullet~v$ la vitesse de l'onde lumineuse dans le milieu . $v\leqslant c \Rightarrow n\geqslant 1$
- Exemples

milieu	vide	air	eau	verre
indice de réfraction	1	1,00029	1,33	entre $1,5$ et $1,8$

• Remarque : Lorsque n est une fonction de la longueur d'onde λ on dit qu'il s'agit d'un milieu dispersif

Dans le cas usuel des milieu MLHI n suit la loi de Cauchy

$$n = A + \frac{B}{\lambda^2}$$

avec A et B sont des constantes .

2 Rayons lumineux

2.1 Définition

Un rayon lumineux est le trajet suivi par la lumière, plus précisement le trajet suivi par l'énergie lumineuse. À partir d'une source lumineuse on peut réaliser un ensemble de rayons lumineux ,c'est-à dire un faisceau lumineux , il existe trois types de faisceau .

- ► Faisceaux divergents : tous les rayons lumineux sont issus d'un même point
- ▶ Faisceaux convergents : tous les rayons lumineux se dirigent vesr un point donné
- ▶ Faisceaux parallèles : tous les rayons lumineux sont parallèles,donc se rencontrent à l'infini .

2.2 hypothèse fondamentale de l'optique géométrique

Dans un milieu linéaire homogène transparent et isotrope (MLHTI) la lumière se propage rectilignement .

2.3 Approximation de l'optique géométrique

• Expérience : On éclaire une ouverture circulaire de rayon r réglable avec un faisceau parallèle (source laser) . Deux cas peuvent se présenter .

▶ $r >> \lambda$: le faisceau reste parallèle

▶ $r \leq \lambda$: le faisceau diverge d'un angle θ

On obtient une tache lumineuse centrale de rayon supérieur à r du diaphragme c'est le phénomène de diffraction

Conclusion : La loi de propagation rectiligne est une loi limite, valable dans le cas de longueurs d'ondes faibles devant les dimensions des diaphragmes (limit ant les faisceaux lumineux) des systèmes optiques . L'optique géométrique est la limite de l'optique ondulatoitre . Elle est valable lors que les dimensions des obstacles sont grandes devant λ .

2.4 Propriétés des rayons lumineux

2.4.1 Indépendance des rayons lumineux

Dans un MLHTI, les rayons lumineux se propagent indépendament les uns des autres .

2.4.2 Principe de retour inverse de la lumière

Le trajet suivi par la lumière ne dépend pas du sens de parcours

3 Lois de Descartes

3.1 Définitions

• Dioptre : Surface séparant deux milieux transparents d'indices différents .

Exemples : surface de l'eau

 i_1 : angle d'incidence

 i_2 : angle de réfraction

r : angle de réflexion

• Point d'incidence : point de rencontre entre les trois rayons

• Plan d'incidence : plan contenant le rayon incident et la normale au dioptre au point d'incidence .

• Miroir : c'est une surface totalement réfléchissante .

3.2 Lois de la réflexion

3.2.1 Enoncé

Soit un rayon lumineux, issu de S , parvenant au point I d'un miroire plan parfaitement réfléchissant .

La direction du rayon réfléchiIR est donnée la première loi de Descartes :

Première loi de Descartes

- \blacktriangleright Le rayon IR appartient au plan d'incidence, défini par le rayon incident SI et la normale IN au miroir .
- ▶ L'angle de réflexion est égal en valeur absolue à l'angle d'incidence |r| = i

3.2.2 Formation algébrique ou vectorielle

Soient $\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{N}$ et \overrightarrow{T} les vecteurs unitaires réspectivement sur IS, IR, IN et le miroire

En tenant compte de l'orientation (+) des angles i = -r. La première loi de Descartes s'éxprime par :

$$\overrightarrow{u}_2 = \overrightarrow{u}_1 + k\overrightarrow{N}$$

avec k : constante

 $\overrightarrow{u}_{2}.\overrightarrow{T} = (\overrightarrow{u}_{1} + k\overrightarrow{N})\overrightarrow{T} = \overrightarrow{u}_{1}\overrightarrow{T} \Rightarrow \sin r = -\sin i \Rightarrow i = -r$

• Remarque : Le trajet suivi par la lumière (SIR) est indépendant du sens de parcours (les rayons SI et IR sont symétriques par rapport à la normale) \Rightarrow principe de retour inverse de la lumière

3.3 Deuxième loi de Descartes : Loi de réfraction

3.3.1 **Enoncé**

Enoncé :

- \blacktriangleright Les rayons incident SI et réfracté IR appartiennt au plan d'incidence
- ▶ Les angles d'incidence et de réfraction vérifient la relation suivante

 $n_1 \sin i_1 = n_2 \sin i_2$

▶ Si $n_1 < n_2$: Le milieu (2) est plus réfringent que le milieu (1) $\Rightarrow i_1 > i_2$

▶ Si $n_1 > n_2$: Le milieu (1) est plus réfringent que (2) ⇒ $i_1 < i_2$

Résultat : Plus le milieu est plus réfringent plus le rayon réfracté s'approche de la normale

3.3.2 Formulation algébrique ou vectorielle

 $n_1 \sin i_1 = n_2 \sin i_2$ $\overrightarrow{u}_1 \cdot \overrightarrow{T} = \cos \alpha = \sin i_1$ $\overrightarrow{u}_2 \cdot \overrightarrow{T} = \cos \beta = \sin i_2$

$$n_1 \overrightarrow{u}_1 . \overrightarrow{T} = n_2 \overrightarrow{u}_2 . \overrightarrow{T}$$

 $n_1 \overrightarrow{u}_1 - n_2 \overrightarrow{u}_2$ est un vecteur perpendiculaire à \overrightarrow{T} $\boxed{n_1 \overrightarrow{u}_1 - n_2 \overrightarrow{u}_2 = k \overrightarrow{N}}$

3.4 Réfraction limite et réflexion totale

3.4.1 Réfraction limite

On passe d'un milieu d'indice n_1 à un milieu plus réfringent d'indice $n_2 > n_1$

Conclusion : Lors du passage d'un milieu (1) vers un milieu (2) plus réfringent, les rayons réfractés sont tous situés à l'intérieur d'un cône appelé cône de réfraction de de mi-angle i_{2l} : angle de réfraction limite .

3.4.2 Réflexion totale

On passe d'un milieu d'indice n_1 à un milieu d'indice $n_2 < n_1$

Lorsque i_2 varie de 0 à $\frac{\pi}{2}$, i_1 varie de 0 à i_{1l}

$$i_{1l} = \arcsin\frac{n_2}{n_1}$$

Tout rayon incident , telque $i_1 > i_{1l}$ ne peut être réfracté et subit donc une réflexion totale sur le dioptre plan .

- Ordre de grandeur : Pour une interface verre/air $i_{1l} = \arcsin \frac{1}{1.5} = 42^{\circ}$
- Quelques applications : Fibre optique ,prisme dans certaines jumelle ...

3.5 Milieu d'indice variable : phénomène de mirage

La loi de réfraction de Descartes s'applique également à un milieu non homogène à condition de le découper en tranches élémentaires d'indices définis, deux tranches successives ayant un indice infiniment voisin .

Le rayon lumineux s'écarte de la normale $(i_2 > i_1)$ dans un milieu moins réfringent $(n_2 < n_1)$.

Ce phénomène est à l'origine des mirages : en été dans une ligne goudronnée on observe une \prec flaque d'eau \succ ceci n'est autre que le reflet du ciel sur la route surchauffée : l'air se réchauffe au contact du sol brûlant,créant une élévation de température vers le bas À pression atmosphérique,si T augmente,la concentration de l'air gazeux diminue $(p = \frac{n}{V}RT = CRT)$,donc l'indice diminue en se rapprochant à celui du vide : il existe une augmentation d'indice vers le haut .

4 Prisme

4.1 Définitions

- ▶ Le prisme est un milieu LHTI limité par deux dioptres plans non parallèles
- ▶ L'angle du dièdre, noté A, est appelé angle du prisme (en générale $A = 60^{\circ}$)
- ▶ Le triangle O_1OO_2 est isocèle
- ▶ Le prisme possède un plan de symétrie passant par l'arrêt du prisme est perpendiculaire à la base
- ► En pratique, le matériau utilisé est le verre dont l'indice varie entre 1,5 et 1,8 suivant la longuer d'onde .

4.2 Marche d'un rayon : Lois du prisme

► Lois de Descartes

 $\left| \frac{\sin i = n \cdot \sin r}{\sin i' = n \cdot \sin r'} \right| (1)$

▶ On montre facilement les deux relations

$$A = r + r' | (3)$$

$$D = i + i' - A | (4)$$

▶ Dans le cas des petites angles : $\sin i \approx i$ et $\sin i' \approx i'$

	i = nr
	i' = nr'
D	=(n-1)A

4.3 Conditions d'émergence

En I': le rayon lumineux II' passe d'un milieu d'indice n à un milieu moins réfringent (l'air) ce rayon est réfracté à condition que

 $n \sin r' = \sin i' \leq 1 \Rightarrow \sin r' \leq \frac{1}{n} \operatorname{donc} r' \leq \theta \operatorname{avec} \theta = \arcsin \frac{1}{n} (\text{réfraction limite})$ Si $r' \leq \theta$ n'est pas vérifiée : le rayon II' se réfléchit sur le dioptre verre $\rightarrow \operatorname{air} \cdot r' \leq \theta$ en utilisant la relation (3) : $r \geq A - \theta \Rightarrow$ la relation (1) donne sin $i \geq n \sin(A - \theta)$ Pour avoir l'émergence en I' : $i \geq i_0$ avec

$$i_0 = \arcsin[n\sin(A-\theta)]$$

 $i_0 \text{ correspond à l'émergence limite } i' = \frac{\pi}{2}$ • Principe de retour inverse de la lumière $i_0 \leqslant i \leqslant \frac{\pi}{2} \text{ et } i_0 \leqslant i' \leqslant \frac{\pi}{2}$ • L'émergence en I' impose une condition sur A $r' \leqslant \theta \Rightarrow r \leqslant \theta \text{ (principe de retour d'inverse) donc } A \leqslant 2\theta$ Conclusion : L'émergence en I' exige deux conditions

- $\bullet \ i \ge i_0 = \arcsin[n\sin(A \theta)]$
- $A \leq 2\theta$ avec $\theta = \arcsin \frac{1}{n}$

4.4 Variation de D en fonction de l'indice

• Minimum de déviation D_m

 $\sin i = n \sin r \Rightarrow \cos i di = n \cos r dr$ $\sin i' = n \sin r' \Rightarrow \cos i' di' = n \cos r' dr'$ $A = r + r' = cte \Rightarrow dA = 0 = dr + dr'$ $D = i + i' - A \Rightarrow dD = di + di'$ $dD = di + \frac{n \cos r'}{\cos i'} dr' = di - \frac{n \cos r'}{\cos i'} dr = di - \frac{n \cos r'}{\cos i'} \frac{\cos i}{n \cos r} di$ $\left[\left(\frac{dD}{di}\right)_{A,n} = 1 - \frac{\cos r'}{\cos r} \frac{\cos i}{\cos i'} \right]$ Il existe une solution évidente pour $\left(\frac{dD}{di}\right)_{A,n} = 0$ $r_m = r'_m = \frac{A}{2}$ $i_m = i'_m = \arcsin(n \sin r_m) = \arcsin(n \sin \frac{A}{2})$

• Le faisceau émerge symétriquement au faisceau incident par rapport au plan de symétrie du prisme

- Le rayon II' à l'intérieur du prisme est parallèle à la base
- Minimum de déviation : $D_m = 2i_m A \Rightarrow i_m = \frac{D_m + A}{2}$

$$n = \frac{\sin(\frac{D_m + A}{2})}{\sin(\frac{A}{2})}$$

► Représentation graphique

4.5 Dispersion d'un rayon polychromatique

Dans le cas d'un rayon polychromatique (lumière blanche) parvenant au point I du prisme sous l'incidence i,nous constatons à la sortie du prisme ,que la lumière incidente est décomposée en toutes ses radiations monochromatiques constituant

le spectre de la lumière blanche

Le rayon incident est d'autant plus dévié que sa longueur d'onde est plus faible

• L'application fondamentale du prisme est la spéctrométrie : l'analyse d'une lumière incidente en ses divers longueurs d'onde : on obtient le spectre de la lumière .

Formation des images dans les conditions de Gauss

Table des matières

1	Déf	inition	S	3
	1.1	Systèn	ne optique	3
	1.2	Objet-	Image	3
		1.2.1	Objet	3
		1.2.2	Image	3
		1.2.3	Conjugaison objet-image	3
	1.3	Stigma	atisme - aplanétisme	4
		1.3.1	Stigmatisme	4
		1.3.2	Aplanétisme	5
2	Арр	oroxim	ation de Gauss	5
	2.1	Appro	ximation de Gauss	5
	2.2	Conclu	usion sur la formation des images	5
3	Sys	tèmes	centrés focaux	6
	3.1	Foyer	principal image-plan focal image	6
	3.2	Foyer	principal objet - plan focal objet	6
4	Mir	oir spł	nérique	7
	4.1	Défini	tions	$\overline{7}$
	4.2	Stigma	atisme	$\overline{7}$
		4.2.1	Stigmatisme rigoureux : centre C et sommet S	7
		4.2.2	Stigmatisme approché : formule de conjugaison	8
	4.3	Systèn	ne centré focal	9
		4.3.1	Foyer principal image F [']	9
		4.3.2	Foyer principal objet F	10
		4.3.3	Vergence V	10
		4.3.4	Plan focal-foyers secondaires	10
	4.4	Modél	isation et constructions	11
		4.4.1	Modélisation	11
		4.4.2	Rayons fondamentaux	11
		4.4.3	Exemple de construction	12
	4.5	Relati	ons algébriques	12
		4.5.1	Formule de Descartes avec origine au sommet S	12
		4.5.2	Formule de Newton avec origine au foyer	12
		4.5.3	Formule de Descartes avec origine au centre	13

5 Lentilles sphériques minces				13
	5.1	Définit	tions	13
		5.1.1	Dioptre sphérique	13
		5.1.2	Lentille sphérique	14
		5.1.3	Lentille sphérique mince	14
	5.2	Stigma	atisme	15
	5.3	Systèn	ne centré focal	15
		5.3.1	Foyers principaux	15
		5.3.2	Foyers secondaires-plans focaux	16
		5.3.3	Dimètre apparent d'un objet ou d'une image à l'infini	17
	5.4	Constr	ruction des images	17
		5.4.1	Cas d'une lentille convergente	17
		5.4.2	Cas d'une lentille divergente	18
	5.5	Relatio	on de conjugaison	18
		5.5.1	Formule de Descartes avec origine au centre optique O	18
		5.5.2	Formule de Newton avec origines aux foyers	19
	5.6	Lentill	es minces accolées	19
		5.6.1	Vergence du système	19
		5.6.2	Intérêt du dispositif	20

1 Définitions

1.1 Système optique

Il s'agit d'un ensemble de dioptre (surface réfractante) et de miroir (surface réfléchissante) fournissant une représentation d'un système de points lumineux . Le système optique est dit centré s'il présente un axe de révolution (Δ) définissant l'axe optique du système On peut distinguer entre :

- ▶ Système dioptrique : Système ne comportant que des dioptres
- ▶ Système catoptrique : Système ne comportant que des miroirs
- ▶ Système catadioptrique : Système comportant des dioptres et des miroirs

1.2 Objet-Image

1.2.1 **Objet**

C'est un ensemble de rayons lumineux entrant dans le système optique

- ▶ Objet primaire : Il emet spontanément la lumière (lampes,étoile...)
- ▶ Objet secondaire : Il diffuse la lumière (livre ,tableau...)
- ▶ Objet ponctuel : Ses dimensions sont infiniment petites par rapport à la distance d'observation.
- ▶ Objet étendu : Cas des dimensions finies (on traite les objets étendues comme un ensemble des objets ponctuels)
- ▶ Objet réel : S'il est placé avant la face d'entrée du système optique
- ▶ Objet virtuel :S'il n'est pas placé avant la face d'entrée du système optique

1.2.2 Image

C'est l'intersection des rayons lumineux émergeant du système optique

- ► Image ponctuelle : Ses dimensions sont inférieurs au pouvoir de résolution d'un recepteur optique (oeil : cellules rétiniennes de quelques μm)
- ▶ Image étendue : Cas contraire
- ▶ Image réelle : S'elle est située après la face de sortie du système optique
- ▶ Image virtuelle : S'elle est située avant la face de sortie du système optique

1.2.3 Conjugaison objet-image

Si tout rayon lumineux issu d'un point objet A émerge d'un système optique en passant par un point image A',on dit que A et A' sont conjugués : A' est l'image conjuguée de A par le système optique .

$$A \xrightarrow{\text{système optique}} A'$$

1.3 Stigmatisme - aplanétisme

1.3.1 Stigmatisme

A
$$\xrightarrow{\text{système optique}}$$
 A

Un système optique est rigoureusement stigmatique pour le couple (A, A') si tout rayon incident passant par A se transformant en un rayon émergent passant par A'.

• Exemples

▶ Miroir plan : stigmatisme rigoureux

Tout rayon incident passant par A correspond un rayon émergent passant par A' : le miroir présente un stigmatisme rigoureux .

La relation de conjugaison pour un miroir plan

 $\overline{HA} + \overline{HA'} = 0$

▶ Dioptre plan : stigmatisme approché

- Le rayon A_1H orthogonal à (D)
- Le rayon A_1I incliné de i_1 par rapport à A_1H
- Les rayons réfractées correspondants se coupent au point A_2 .

$$\tan i_2 = \frac{\overline{HI}}{\overline{A_2H}} \text{ et } \tan i_1 = \frac{\overline{HI}}{\overline{A_1H}} \text{ donc}$$
$$\overline{HA_2} = \overline{HA_1} \frac{\tan i_1}{\tan i_2}$$

• Résultat : La position A_2 dépend de l'inclinaison i_1 du rayon incident A_1I , donc il n'existe pas de stigmatisme rigoureux dans le cas d'un dioptre plan .

• Cas des faibles incidences :

Supposons que les rayons incidents , issus de A_1 soient faiblement inclinés par rapport à la direction A_1H : $\tan i_1 \approx \sin i_1 \approx i_1$ et $\tan i_2 \approx \sin i_2 \approx i_2$

$$\frac{\overline{HA_2}}{\overline{HA_1}} \approx \frac{n_2}{n_1}$$

Tous les rayons réfractés semblent passer par le même point A_2 , on dit qu'il ya stigmatisme approché .

 \bullet Remarque : L'image observée n'est pas rigoureusement ponctuelle mais de faible dimension au voisinage de A_2 .

1.3.2 Aplanétisme

- ► Le système optique présente une applanétisme pour un couple de point A et A' de l'axe optique, si tout petit objet AB plan perpendiculaire à l'axe Δ a une image A'B' plan et perpendiculaire à Δ .
- ▶ Le système présente un stigmatisme pour le couple de point A et A' et quelque soit le point B du plan orthogonal en A à ∆ proche de A,il existe un un point B' du plan orthogonal à ∆ en A' telque le système est stigmatique pour B et B'.
 Exemples :
- ▶ Miroir plan est stigmatique et aplanétique, c'est le seul système optique présentant ces deux propriétés de façon rigoureuse .
- ▶ Dioptre plan : stigmatisme et aplanétisme approché .

2 Approximation de Gauss

2.1 Approximation de Gauss

Cette approximation consiste à ne prendre en compte que les rayons paraxiaux :

- ► Les rayons peu inclinés par rapport à l'axe optique l'axe optique : l'angle α du rayon avec l'axe optique est faible .
- ► Les rayons peu écarté de l'axe optique : la distance entre le point de contact du rayon lumineux avec la surface du système optique et l'axe optique est petite devant la longueur caractéristique de la courbure (rayon de courbure) .
- ▶ En pratique : Pour réaliser les conditions de Gauss il suffit d'étuliser un diaphragme à l'entrée qui limite l'inclinaison et la surface de contact avec le système optique .

• Remarque : Il ne faut pas prendre l'ouverture du diaphragme trop petit à cause du phénomène de diffraction .

2.2 Conclusion sur la formation des images

Les facteurs agissant sur la dimension de l'image d'un objet ponctuel, donnée par un système centré sont :

- ▶ Aberrations géométriques, dues au système optique lui même, en absence du stigmatisme rigoureux
- ► Structure granulaire du récepteur
- ▶ Nature ondulatoire de la lumière, provoquant des phénomènes de diffraction en cas d'ouverture trop faible.

Systèmes centrés focaux 3

3.1Fover principal image-plan focal image

• Foyer image principal F': c'est l'image d'un poit objet situé à l'infini sur l'axe optique • Si le foyer principal image F' se situe à une distance finie le système est dit focal, et dans le cas contraire (F' se situe à l' ∞) le système est dit afocal .

• Remarque : F' pourra être réel où virtuel .

• Exemples :

- ▶ Le miroir plan et le dioptre plan sont des systèmes afocaux .
 - miroir plan : $\overline{HA} + \overline{HA'} = 0$ si A_{∞} alors A'_{∞} • dioptre plan : $\frac{\overline{HA}}{n_1} = \frac{\overline{HA'}}{n_2}$ si A_{∞} alors A_{∞}
- ▶ Les miroirs sphériques, les lentilles sont des système focaux.

• Plan focal image : il s'agit d'un plan perpendiculaire à l'axe optique et passant par le foyer principal image.

3.2Foyer principal objet - plan focal objet

• Fover principal objet F : C'est le point de l'axe optique dont l'image est à l'infini sur l'axe optique.

Foyer objet F
$$\xrightarrow{\text{système centré}}$$
 Point image A'_{∞} focal

• Plan focal objet : C'est un plan perpendiculaire à l'axe optique et passant par le foyer principal objet F.

6 / 20

4 Miroir sphérique

4.1 Définitions

Un miroir sphérique correspond à une portion de surface sphérique réflichissante de centre C . L'axe optique passant par le centre C coupe la surface du miroir en son sommet S .

- On oriente positivement l'axe optique xx' dans le sens de la lumière incidente .
- On définit le rayon algébrique d'un miroir par

 $R = \overline{SC}$

 \bullet Le miroir plan est un cas particulier d'un miroir sphérique pour le quel le rayon de courbure est infini $R=\infty$

- Miroir concave : le rayon R vérifie $R = \overline{SC} < 0$
- Miroir convexe : le rayon R vérifie $R = \overline{SC} > 0$

Miroir concave R < 0

Miroir convexe R > 0

4.2 Stigmatisme

4.2.1 Stigmatisme rigoureux : centre C et sommet S

► Tout rayon incident passant par C arrive selon la normale au miroir sphérique et repasse par C après réflexion : il y a stigmatisme rigoureux pour le point C .

C miroir sphérique

C (stigmatisme rigoureux)

► Tout rayon incident en S sur le miroir est réflechi symétriquement par rapport à l'axe optique et semble parvenir de S : il y a stigmatisme rigoureux pour S .

Conclusion : Pour un miroir sphérique il y a stigmatisme rigoureux pour le centre C et le sommet S .

4.2.2 Stigmatisme approché : formule de conjugaison

Stigmatisme approché : Pour des points distincts de S et C il y a stigmatisme approché si on travaille dans les conditions de Gauss (rayons paraxiaux) .

On travaille dans le cadre des rayons paraxiaux , les angles sont faibles $(\tan\theta\approx\theta)$ \bullet triangle AIC

 $\alpha + (-i) + \pi - \omega = \pi$

$$(-i) = \omega - \alpha$$

• tiangle A'IC $\pi - \alpha' + i' + \omega = \pi$

la loi de réflexion :

$$\frac{2\omega = \alpha + \alpha'}{\tan \alpha} \operatorname{car} (-i) = i'$$
$$\tan \alpha \approx \alpha = \frac{\overline{HI}}{\overline{\overline{AH}}}; \tan \alpha' \approx \alpha' = \frac{\overline{HI}}{\overline{\overline{A'H}}}; \tan \omega \approx \omega = \frac{\overline{\overline{HI}}}{\overline{\overline{CH}}}$$

$$2\frac{HI}{\overline{CH}} = \frac{HI}{\overline{AH}} + \frac{HI}{\overline{A'H}}$$

Pour les rayons paraxiaux $H \approx S$

$$2\frac{\overline{HI}}{\overline{CS}} = \frac{\overline{HI}}{\overline{AS}} + \frac{\overline{HI}}{\overline{A'S}}$$

On obtient la formule de conjugaison de Descartes

 $\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}$ origine au sommet S

Conclusion : La position A' ne dépend que de A dans les conditions de Gauss : il y a stigmatisme approché : A et A' sont deux points conjugués . Objet A ______ image A' ; objet A' ______ image A

• Remarque : La formule établi s'étend algébriquement à tout miroir sphérique convexe où concave .

4.3 Système centré focal

4.3.1 Foyer principal image F'

C'est l'image d'un point objet à l'infini A_{∞} sur l'axe optique (faisceau lumineux parallèle à l'axe optique).

objet
$$A_{\infty}$$
 $\xrightarrow{\text{miroir sphérique}}$ image F

La relation de conjugaison au sommet

$$\frac{1}{\overline{SA_{\infty}}} + \frac{1}{\overline{SF'}} = \frac{2}{\overline{SC}} \text{ avec } \frac{1}{\overline{SA_{\infty}}} = 0$$
$$\overline{\overline{SF'}} = \frac{\overline{SC}}{2}$$

donc F' est le milieu de SC

F' est réel pour un miroir concave $(\overline{SF'} < 0)$ et virtuel pour un miroir convexe $(\overline{SF'} > 0)$

4.3.2 Foyer principal objet F

D'après le principe du retour inverse de la lumière, tout rayon issu de F' a une image à l'infini sur l'axe . Donc le foyer objet principal F est confondu avec le foyer principal image F', on parle par la suite simplement du foyer principal F .

F = F'

Conclusion : Pour un miroir concave et convexe, le foyer principal F est donné par :

$$\overline{SF} = \frac{\overline{SC}}{2} = \frac{R}{2}$$

4.3.3 Vergence V

On définit la vergence du miroir sphérique par

$$V = \frac{1}{f'} = \frac{1}{\overline{SF'}} = \frac{2}{R}$$

V en dioptrie (δ) ou m^{-1}

- le miroir concave est convergent : V < 0, F et F' sont réels
- le miroir convexe est divergent : V > 0, F et F'sont virtuels

4.3.4 Plan focal-foyers secondaires

- Plan focal : plan perpendiculaire à l'axe optique et passant par le foyer principal
 F
- ▶ Foyer secondaire : c'est l'image d'un point B_{∞} situé à l'infini en dehors de l'axe optique, cette image se trouve dans le plan focal B'.
- ▶ Réciproquement : tout point dans le plan focal son image est situé à l'infini .

 $\blacktriangleright \alpha$: diamètre apparent de l'objet

+	FB'	A'B'
$\tan \alpha \approx \alpha_{rad} =$	$\overline{CF} =$	= f'

4.4 Modélisation et constructions

4.4.1 Modélisation

Dans toute la suite on va travailler dans les conditions de Gauss, donc on va confondre le miroir avec son plan tangent en S d'où la représentation suivante du miroir .

4.4.2 Rayons fondamentaux

Pour construire l'image d'un objet AB perpendiculaire à l'axe optique, il faut prendre deux rayons lumineux parmi les quatres .

- ▶ le rayon passant par B et le centre C revient sur lui même
- ▶ le rayon passant par B et le sommet S revient symétriquement à l'axe optique
- ▶ le rayon issu de l'infini parallèle à l'axe optique passant par B revient en passant par le foyer F
- ▶ le rayon passant par B et F (foyer objet) revient parallèlement à l'axe optique

4.4.3 Exemple de construction

On définit le grandissement γ par

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}}$$

- $\blacktriangleright \ \gamma < -1$: image renversée et plus grande que l'objet
- $\blacktriangleright \ \gamma = -1$: image renversée et égale à l'objet
- $\blacktriangleright \ \gamma = 1$: image droite et égale à l'objet
- ▶ $\gamma > 1$: image droite et plus grande que l'objet
- $\blacktriangleright \ \gamma < 1$: image droite plus petite que l'objet

4.5 Relations algébriques

4.5.1 Formule de Descartes avec origine au sommet S

La relation de conjugaison au sommet : $\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}} = \frac{1}{\overline{SF'}}$ Le grandissement $\gamma = \frac{\overline{A'B'}}{\overline{AB}}$ dans le triangle SAB : $\frac{\overline{A'B''}}{\overline{AB}} = \frac{\overline{SA'}}{\overline{SA}}$ avec $\overline{A'B'} = -\overline{A'B''}$ $\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{A'B''}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}}$

c'est la formule de Descartes avec origine au sommet S

4.5.2 Formule de Newton avec origine au foyer

Les triangles ABF et SFI₂ sont semblables ,d'après le Théorème de Thalès :

$$\frac{\overline{AB}}{\overline{SI_2}} = \frac{\overline{FA}}{\overline{FS}}$$

Les triangles I_1FS et A'B'F sont semblables : et F = F'

12 / 20

Cours d'optique géométrique

$$\frac{\overline{A'B'}}{\overline{SI_1}} = \frac{\overline{FA'}}{\overline{FS}} = \frac{\overline{F'A'}}{\overline{F'S}}$$

comme $\overline{AB} = \overline{SI_1}$ et $\overline{A'B'} = \overline{SI_2}$

$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{F'A'}}{\overline{F'S}} = \frac{\overline{FS}}{\overline{FA}}$$

$$\overline{FA}.\overline{F'A'} = \overline{FS}.\overline{F'S} = f.f' = f^2 = f'^2 = \frac{R^2}{4}$$

c'est la formule de Newton avec origine au foyer

	$\overline{A'B'}$	f	$\overline{F'A'}$
'γ —	\overline{AB}	$\overline{\overline{FA}}$ -	f'

4.5.3 Formule de Descartes avec origine au centre

$$\overline{FA} = \overline{FC} + \overline{CA} = -\frac{\overline{CS}}{2} + \overline{CA} = f + \overline{CA}$$

$$\overline{F'A'} = \overline{F'C} + \overline{CA'} = -\frac{\overline{CS}}{2} + \overline{CA'} = f' + \overline{CA'}$$

$$\overline{FA}.\overline{F'A'} = (\overline{CA} + f).(\overline{CA'} + f') = \overline{CA}.\overline{CA'} + \overline{CA}.f' + f.\overline{CA'} + ff' = ff'$$
en divisant sur $\overline{CA}.\overline{CA'}.f'$ on trouve la formule de Descartes avec origine

$$\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = -\frac{1}{f'} = \frac{2}{\overline{CS}}$$
$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{CA'}}{\overline{CA}}$$

5 Lentilles sphériques minces

5.1 Définitions

5.1.1 Dioptre sphérique

Elle s'agit d'une portion de sphère de centre C et de rayon R séparant deux milieux linéaires homogènes transparents isotropes (MLHTI) d'indices différents n et n' .

sup TSI

au centre

5.1.2 Lentille sphérique

Elle s'agit d'une portion de MLHTI limitée par deux dioptres sphériques (ou une sphérique et l'autre plan) de même axe de révolution (l'axe optique du système centré)

Les rayons des deux dioptres sphériques sont algébriques .

 $R_1 = \overline{S_1 C_1}$ et $R_2 = \overline{S_2 C_2}$

• Les deux milieux extêmes correspondant généralement à l'air .

 $R_1 = \overline{S_1 C_1} > 0$ et $R_2 = \overline{S_2 C_2} < 0$

5.1.3 Lentille sphérique mince

Une lentille est qualifie de mince lorsque son épaisseur $e = S_1S_2$ est faible devant les valeurs absolues des rayons de courbure des deux dioptres qui la composent ainsi qu'à la distance $d = C_1C_2$

 $e << |R_1|; e << |R_2|; e << |d|$

Les sommets S_1 et S_2 sont quasi confondus en un point O appelé centre optique de la lentille : $S_1\approx S_2=O$

On peut distinguer entre deux types de lentilles

► Lentilles convergentes : Elles referment les faisceaux lumineux Pratiquement : Elles sont des lentilles à bords minces

► Lentilles convergentes : Elles ouvrent les faisceaux lumineux Pratiquement : Elles sont des lentilles à bords épais

5.2 Stigmatisme

Dans le cadre des rayons paraxiaux

- ▶ On peut associer à tout point objet A de l'axe optique,une image ponctuelle A' sur l'axe optique (stigmatisme approché) .
- ▶ L'image A'B' d'un objet AB perpendiculaire sur l'axe optique est aussi perpendiculaire à l'axe optique (stigmatisme approché dans le plan transverse = aplanétisme approché).

5.3 Système centré focal

5.3.1 Foyers principaux

 \bullet Foyer principal image F' : C'est l'image d'un point objet situé à l'infini sur l'axe optique .

 \bullet Foyer principal objet F : C'est le point de l'axe dont l'image se trouve à l'infini sur cet axe

foyer principal objet F
$$\longrightarrow$$
 image A'_{∞} image A'_{∞}

On peut vérifier que ces deux foyers sont

- ▶ réels pour une lentille convergente
- ▶ virtuels pour une lentille divergente
- ▶ symétriques l'un de l'autre par rapport au centre optique O

• Distances focales : On définit les distances focales objet et image par des grandeurs algébriques :

- lentille convergente : f < 0 et f' > 0
- lentille divergente : f > 0 et f' < 0
- Vergence d'une lentille : Elle est définit comme étant la grandeur

$$V = \frac{1}{f'} = -\frac{1}{f}$$

5.3.2 Foyers secondaires-plans focaux

• Plan focal objet : plan perpendiculaire à l'axe optique et passant par ${\cal F}$

• Foyer secondaire Objet ϕ : un point ϕ du plan focal objet ou son image à travers une lentille est rejetée à l'infini .

- plan focal image : plan perpendiculaire à l'axe optique et passant par F'
- Foyer secondaire image ϕ' : un point du plan focal image

5.3.3 Dimètre apparent d'un objet ou d'une image à l'infini

 α est appellé diamètre apparent Dans le cas où l'image à l'infini

$$\alpha' = 2\theta' = \frac{AB}{|f|}$$

5.4 Construction des images

5.4.1 Cas d'une lentille convergente

le grandissement

	$\overline{A'B'}$
· y —	\overline{AB}

5.4.2 Cas d'une lentille divergente

5.5 Relation de conjugaison

5.5.1 Formule de Descartes avec origine au centre optique O

le grandissement
$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

triangle OIF' et A'B'F' sont semblables : $\frac{\overline{A'B'}}{\overline{OI}} = \frac{\overline{F'A'}}{\overline{F'O}}$
 $\overline{OI} = \overline{AB}$ et $\overline{F'A'} = \overline{OA'} - \overline{OF'}$
 $\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OF'} - \overline{OA'}}{\overline{OF'}} = \frac{\overline{OA'}}{\overline{OA}} \Rightarrow 1 - \frac{\overline{OA'}}{\overline{OA}} = \frac{\overline{OA'}}{\overline{OF'}}$
En divisant par $\overline{OA'}$ on obtient :
 $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}} = \frac{1}{f'}$

5.5.2 Formule de Newton avec origines aux foyers

5.6 Lentilles minces accolées

5.6.1 Vergence du système

•Définition : les deux le ntilles minces quelconques (O_1, f'_1) et (O_2, f'_2) sont dites accolées lors que

$$O_1 O_2 << |f_1'|$$
 et $O_1 O_2 << |f_2'|$

On note O le centre optique commun des deux lentilles $O\approx O_1\approx O_2$

• Exemple

• Relation de conjugaison du système

Objet A $\xrightarrow{L_1} A_1 \xrightarrow{L_2}$ image A'

avec L_1 : la lentille convergente L_2 : la lentille divergente

• Pour
$$L_1: \frac{1}{\overline{OA_1}} - \frac{1}{\overline{OA}} = \frac{1}{f_1'} (1)$$

• Pour $L_2: \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA_1}} = \frac{1}{f_2'} (2)$
 $(1) + (2) \Rightarrow \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f_1'} + \frac{1}{f_2'} = V_1 + V_2 = V_1$

Conclusion : le système de deux le ntilles est équivalent à une le ntille de vergence ${\cal V}$ tel que

 $V = V_1 + V_2$

5.6.2 Intérêt du dispositif

• On peut mesurer la distance focale d'une lentille divergente $(f'_2 < 0)$ en l'accolant avec une lentille convergente $(f'_1 > 0)$ telque $f'_1 < |f'_2|$ ce qui permet de rendre le système convergent $V = \frac{1}{f'_1} + \frac{1}{f'_2} = \frac{1}{f'_1} - \frac{1}{|f'_2|} > 0$

• En accolant une lentille convergente en crown et une lentille divergente en flint (autre variété de verre) on peut réaliser un achromat convergent (dépourvu d'aberration chromatiques) : f' peu dépendre de λ .

Instruments optiques

Table des matières

1	L'oe	eil 2
	1.1	Modèle optique de l'oeil
	1.2	Phénomène d'accommodation
	1.3	Punctum rémotum(PR)et punctum proximum(PP)de l'oeil normal 2
	1.4	Diamètre apparent
	1.5	Limite de résolution
	1.6	Défauts de l'oeil
		1.6.1 Myopie
		1.6.2 Hypermétropie
		1.6.3 Presbytie
		1.6.4 Astigmatisme
2	Lou	ape 4
	2.1	Définition
	2.2	Profondeur du champ
	2.3	Performances d'une loupe
		2.3.1 Puissance d'une loupe 5
		2.3.2 Pouvoir séparateur 6
		2.3.3 Grossissement
3	Col	limateur 7
	3.1	Définition
	3.2	Réglage du collimateur 8
4	Lun	nette 8
	4.1	Eléments de base d'une lunette
	4.2	Lunette de visée à l'infini ou lunette afocale
	4.3	Lunette autocollimatrice
	4.4	Lunette à frontale fixe ou Viseur

1 L'oeil

1.1 Modèle optique de l'oeil

Quel que soit l'instrument utilisé, l'élément finale est en général l'oeil.

Elément optique	Fonction
Objectif : dioptre sphérique(cornée)	formation de l'image
et lentille mince biconvexe(cristallin)	
Diaphragme : pupille	Réglage de la quantité de lumière pénétrant dans l'oeil
Récepteur de la lumière : rétine	Impression de l'image(écran)
Nerf optique	perception de l'image

• conclusion : L'oeil est une lentille convergente à distance focale variable (l'écran est placée toujours dans le plan focal image de la lentille)

L'oeil réduite

1.2 Phénomène d'accommodation

Pour qu'un objet soit perçu par l'oeil, il faut que son image soit reçue sur la rétine. Cette condition est réalisée pour la vision à l'infini : le cristallin est alors au repos. Pour observer un objet rapproché, l'oeil accommode : les muscles du cristallin augmentent sa vergence en bombant la face antérieure de la lentille biconvexe associée.

1.3 Punctum rémotum(PR)et punctum proximum(PP)de l'oeil normal

• punctum rémotum (PR) : le point le plus éloigné pouvant donner une image nette sur la rétine l'oeil étant au repos.

Pour l'oeil normal (emmétrope) le PR est à l'infini : la distance maximale de vision distincte D_m tend vers l'infini pour l'oeil normal

• punctum proximum PP: le point le plus proche pouvant donner une image nette sur la rétine, l'oeil accommodant au maximum. Pour l'oeil normal le PPest à 25cm de l'oeil : la distance minimale de vision distincte d_m est de 25cmpour l'oeil normal.

Conclusion : Pour l'oeil normal :

- La distance maximale de vision distincte $D_m = \infty$
- La distance minimale de vision distancte $d_m = 25cm = \frac{1}{4}cm$

1.4 Diamètre apparent

Il représente l'angle α , sous lequel l'oeil nu observe un objet AB à la distance d

$$\tan \alpha = \frac{AB}{d} \text{ avec } d >> AB$$

$$\tan \alpha \approx \alpha = \frac{AB}{d}$$

Pour l'oeil normal le diamètre apparent maximum est obtenu pour $d = d_m = 25cm$ donc

$$\tan \alpha_{max} \approx \alpha_{max} = \frac{AB}{d_m} = 4AB$$

1.5 Limite de résolution

L'oeil ne peut séparer deux objets que si leurs images sur la rétine sont suffisamment éloignées pour se former des cônes différents.Il est caractérisé par son pouvoir séparateur angulaire qu'est de l'ordre d'une minute.

pouvoir séparateur angulaire de l'oeil=
$$1' = \frac{1}{60^{\circ}} = 3.10^{-4} rad$$

1.6 Défauts de l'oeil

1.6.1 Myopie

Le cristallin est trop convergent . Le PP est plus près que l'oeil normal et le PR est à distance finie . La lentille correctrice est divergente.

1.6.2 Hypermétropie

Le cristallin n'est pas assez convergent . L'hypermétrope doit accommoder pour voir à l'infini, et son PP est plus éloigné que pour l'oeil normal . La lentille correct rectrice est convergente

1.6.3 Presbytie

L'o
eil perd sa faculté d'accommodation et ne voit plus qu'au vois
inage de son $PR,\!{\rm c'est}$ à dire de loin .

1.6.4 Astigmatisme

L'oeil présente des défauts de symétrie de révolution sphérique, ce qui se traduit par des aberrations .

2 Loupe

2.1 Définition

Une loupe est une lentille convergente de courte distance focale qui donne d'un objet réel de petites dimensions une image virtuelle et droite, plus grande que l'objet.Ceci est vérifié si l'objet est placé entre le centre de la lentille et le foyer image F'. C'est l'instrument d'otique le plus simple qui permet d'augmenter le pouvoir séparateur de l'oeil.

• L'o
eil étant placé en générale au foyer image F'. L'avantage de cette position de l'o
eil c'est que l'image est toujours vue sous le même diamètre angulaire
 α' quelque soit la position de l'objet entre F et O .

2.2 Profondeur du champ

Il s'agit d'un intervalle des positions de l'objet tel que l'image soit visible de façon nette par l'oeil .

• Calcul du profondeur de champ l pour l'oeil normal

L'o
eil voit A'B'nette s'il situe entre le PP
et PR de l'o
eil . la relation de Newton : $\overline{FA}.\overline{FA'}=-f'^2$

- Si A' au $PR: \overline{F'A'} \to \infty \Rightarrow A$ en F
- Si A' au PP : $\overline{F'A'} = -d_m \Rightarrow \overline{FA} = \frac{f'^2}{d_m}$ soit $l = \frac{f'^2}{d_m}$
- Les loupes usuelles varient entre 10 et 50δ de vergence (f' entre 10 et 2cm), ce qui conduit à l variant entre 4 et 0.16cm

2.3 Performances d'une loupe

2.3.1 Puissance d'une loupe

Soit α' le diamètre apparent de l'image A'B',vue par l'oeil,observant l'objet AB à travers la loupe . On définit la puissance P d'une loupe (instrument optique) par

$$P = \frac{\alpha'}{AB}$$
; unité : δ

• Puissance intrinsèque Considérons les deux cas suivants

- ▶ L'image A'B' à l'infini
- ► L'oeil au foyer image

Dans ces deux cas : $\tan \alpha' \approx \alpha' = \frac{AB}{OF'} \Rightarrow P = \frac{\alpha'}{AB}$ $\boxed{P = \frac{1}{OF'} = \frac{1}{f'} = V}$

Conclusion

Dans les deux cas examinés, la puissance de la loupe ne dépend pas de la dimension de l'objet , elle caractérise la loupe d'où le nom intrinsèque . On note cette puissance par P_i .

2.3.2 Pouvoir séparateur

L'o
eil ne peut distinger deux objets que si leurs images se forment sur des cellules rétiniènnes différentes . Cela nécessite un diamétre angulaire minimal
 α_m de l'ordre de $3.10^{-4} rad$

2.3.3 Grossissement

Définition : Le grossissement est le rapport entre le diamétre apparent de l'image à travers la loupe α' et le diamétre apparent de l'objet α , observé à l'oeil nu donc

G =	$\underline{\alpha'}$

Le grossissement commercial est défini pour une image vue au PR à travers l'instrument et un objet vu au PP à l'oeil nu.

• Pour le grossissement commercial : l'objet est dans le PP de l'Oeil et l'image dans le PR

3 Collimateur

3.1 Définition

Le collimateur est un système optique permettant d'obtenir un objet à l'infini.Il est constitué d' :

- Une source d'éclairage
- Un reticule (deux files ou croix)
- Une lentille convergente L_c (objectif du collimateur)

3.2 Réglage du collimateur

Le réglage de collimateur consiste à amener le réticule au foyer objet ${\cal F}_c$ à une molette (M_c)

Réticule en
$$F_C$$
 \longrightarrow A'_{∞}

Cette image réelle joue le rôle d'un objet virtuel à l'infini

4 Lunette

4.1 Eléments de base d'une lunette

Les lunettes sont composées d' :

- Un objectif
- Un oculaire
- Un réticule

L'objectif donne d'un objet (AB) une image intermédiaire (A_1B_1) . L'oculaire permet l'observation de l'image intermédiaire (A_1B_1) , il en donne une image finale (A'B'). Si (A_1B_1) est dans le plan focal objet de l'oculaire, (A'B') est à l'infini (vision sans accommodation pour l'oeil normal). Le réticule est un ensemble de 2 fils à angle droit, il est placé dans le plan focal objet de l'oculaire.

4.2 Lunette de visée à l'infini ou lunette afocale

La lunette afocale permet de voir nets des objets à l'infini.

- L'objectif donne de l'objet AB pointé à l'infini une image A'B' dans son plan focal image.
- L'oculaire permet l'observation simultanée de cette image et du réticule . Une lunette est réglée si l'oeil peut voir nette l'image de l'objet pointé et celle du réticule sans effort d'accommodation, l'image finale est alors à l'infini . L'image intermédiaire et le plan du réticule sont dans le plan focal objet de l'oculaire .

© Boukaddid

Instruments optiques

Le réglage de la lunette se fait en deux étapes :

• Premier réglage

Il consiste à modifier la distance oculaire-réticule pour amener le réticule dans le plan focal objet de l'oculaire, on voit alors le réticule net sans accommoder, un oeil normal regardant à l'infini, placé devant la lunette, voit le réticule sans effort.

• Deuxième réglage : Tirage de la lunette à l'infini

Il consiste à modifier la distance entre l'objectif et le système réticule-oculaire pour mettre en coïncidence le plan focal image de l'objectif et le plan du réticule . Ce réglage peut se faire en pointant un objet à l'infini .

4.3 Lunette autocollimatrice

Il n'est pas toujours facile au laboratoire de viser un objet à l'infini.On le fabrique par réflexion sur un miroir. Une lunette de visée à l'infini peut également se régler par autocollimation, c'est à-dire par la visée de l'image de réticule à l'infini grâce à un système objectif et miroir.

Réticule $\mathbf{R}^{objectifL_1} \xrightarrow{\infty} \xrightarrow{Miroir} \infty \xrightarrow{ObjectifL_1} R'$

Si le réticule dans le plan focal objet (π_2) de l'Oculaire, est également dans le plan focal image (π'_1) de l'Objectif (ce qu'on veut), alors, son image à travers le système optique Objectif-Miroir-Objectif se formera dans son propre plan. Alors, R et R', le réticule et son image obtenue par autocollimation, deviennent des objets pour l'Oculaire (L_2) . Leurs images finales R_f et R'_f sont dans le même plan conjugué de (π'_2) (c'est-à dire,à l'ifini).

$$R = R' \stackrel{OculaireL_2}{\longrightarrow} R_f = R'_f$$

Conclusion : lorsqu'on voit en même temps R_f et R'_f nets, c'est que R et R' sont dans le même plan, donc $\pi'_1 = \pi_2$, on dit que l'Objectif est réglé.

•Remarque : Ce réglage est relativement difficile mais il est très important et nécessite donc une grande précision.

Si la lunette est mal réglée, R et R' ne sont pas dans le même plan . Alors, lorsqu'on

© Boukaddid

déplace l'oeil la téralement devant l'Oculaire, R_f' se déplace par rapport à R_f . C'est l'« erreur de parallaxe ».

4.4 Lunette à frontale fixe ou Viseur

Un viseur donne une image nette d'un objet à distance finie. Cela revient à dérégler une lunette afocale en modifiant son tirage pour avoir $F'_1 \neq F_2$

• Réglage pour un oeil normal

Deux méthodes pour obtenir un viseur à partir d'une lunette de visée à l'infini :

- placer devant (L_1) une lentille additionnelle appelée « bonnette »;
- augmenter le tirage (la distance) Objectif-Réticule-Oculaire : plus on veut observer un objet proche du viseur et plus il faut augmenter cette distance

Modèle scalaire de la lumière

Table des matières

1	Modèle scalaire de la lumière	2
	1.1 Représentation scalaire de la lumière-Notion d'une vibration lumineuse	2
	1.2 Propagation d'une vibration lumineuse	2
2	Chemin optique et surface d'onde-Théorème de Malus-Dupin	3
	2.1 Chemin optique	3
	2.2 Phase instantanée	3
	2.3 Théorème de Malus	5
3	Intensité lumineuse ou éclairement	5
	3.1 Source lumineuse	5
	3.2 Intensité lumineuse ou éclairement	6
	3.3 Densité spéctrale de l'intensité	6

1 Modèle scalaire de la lumière

1.1 Représentation scalaire de la lumière-Notion d'une vibration lumineuse

Dans la plupart des expériences de l'optique ondulatoire les ondes lumineuses sont soit :

- non polarisées (lampes, sources de lumières blanches...)dont les directions de propagation sont voisines
- polarisées dont les directions de polarisations sont voisines

Donc la superposition de ses ondes nécessitent seulement une représentation scalaire des ondes lumineuses

• Modèle scalaire de lumière : Pour le domaine de l'optique,et dans la plus grande majorité des milieux,la lumière émise par une source peut être décrite par une onde scalaire,appelée vibration lumineuse.

- $\overrightarrow{E}_1(M, t) = S_1(M, t) \overrightarrow{e}_x$ et $\overrightarrow{E}_2(M, t) = S_2(M, t) \overrightarrow{e}_x$
- $S_1(M, t)$ et $S_2(M, t)$ représentent les vibrations lumineuses
- dans le cadre du modèle scalaire de la lumière, on travaille avec S(M, t) au lieu de $\overrightarrow{E}(M,t)$

1.2 Propagation d'une vibration lumineuse

Le théorème de Fourier permet de décomposer une vibration lumineuse émise par une source ponctuelle en ondes sinusoïdales, ou harmoniques, encore appelées : ondes progressives monochromatiques, de la forme générale

$$S(M, t) = A(M) \cos\left(\omega\left(t - \frac{SM}{\nu}\right) - \varphi_s\right)$$

- φ_s : le déphasage initial au point source S
- A(M) : l'amplitude de la vibration
- v : célérité de la propagation de la lumière dans un milieu
- l'indice de réfraction du milieu

$$n = \frac{c}{v}$$

•
$$\omega \left(t - \frac{SM}{\nu} \right) = \omega t - \frac{\omega}{c} nSM$$
, or $\frac{\omega}{c} = \frac{2\pi}{cT} = \frac{2\pi}{\lambda_0}$, avec λ_0 : longueur d'onde dans le vide
 $S(M, t) = A(M) \cos \left(\omega t - \frac{2\pi}{\lambda_0} nSM - \varphi_s \right)$

Un changement de milieu dans la propagation d'une onde lumineuse ne modifie pas sa pul-
sation temporelle (donc ni T, ni v) mais change sa longueur d'onde (via l'indice
$$n$$
).

• l'amplitude A(M) =
$$\frac{a_{0S}}{SM}$$

• les distances de la source au point M étant trés grandes davant la longueur d'onde dans le vide $\lambda = cT = c \frac{2\pi}{\omega}$ et les dimensions de la surface utile du récepteur, on peut considérer que, dans une petite zone autour du point M, la distance à la source ne varie pas

$$\mathbf{S}(\mathbf{M},t) = a_0 \cos(\omega t - \frac{2\pi}{\lambda_0} n(\mathbf{S}\mathbf{M}) - \varphi_s)$$

2 Chemin optique et surface d'onde-Théorème de Malus-Dupin

2.1 Chemin optique

•Définition : On définit le chemin Optique de A à B selon une courbe (C) comme la quantité

$$(AB) = \delta_{AB} = \int_{A(C)}^{B} n(M) dl$$

• pour un milieu linéaire homogène transparant et isotrope (MLHTI) la lumière se propage en lignes droites

pour un (MLHTI) : (AB) = nAB

•
$$\delta_{AB} = \int_{A(C)}^{B} n(M) dl = \int_{A}^{B} n(M) v(M) dt = \int_{t_{A}}^{t_{B}} c dt = c(t_{B} - t_{A})$$

•Le chemin optique représente la distance parcourue par la lumière dans le vide pendant la durée réelle mise pour aller de A à B dans le milieu d'indice *n*.

2.2 Phase instantanée

- la phase instantanée : $\phi(M, t) = \omega t \frac{2\pi}{\lambda_0} nSM \varphi_s$
- dans un MLHTI : (SM) = nSM

$$\phi(\mathbf{M}, t) = \omega t - \frac{2\pi}{\lambda_0}(\mathbf{S}\mathbf{M}) - \varphi_s$$

• $\phi_{S \to M} = \phi(M) - \phi(S) = -\frac{2\pi}{\lambda_0}(SM)$: représente la différence de phase entre les points M et S ou le retard de phase due à la propagation entre S et M

• Propriétés

La phase d'une onde lumineuse est continue pour :

- une réfraction
- une réflexion sur un dioptre,où l'onde incidente se propage dans un milieu d'indice le plus élevé

La phase d'une onde subit une discontinuité de π pour :

- une réflexion sur un dioptre,où l'onde incidente se propage dans le milieu d'indice le plus faible
- une réflexion sur un métal
- le passage par un point de convergence

$$\varphi_{S \to M} = -\frac{2\pi}{\lambda_0}(SM) + \pi$$

 $\varphi_{A \to B} = nAB + \pi$

- > Déphasage entre deux points situées sur un même rayon lumineux
 - on suppose que le milieu est un MLHTI
 - $\vec{u}_r = \frac{OM}{OM}$: vecteur unitaire dirigé dans le sens de propagation
 - $\vec{k} = \frac{2\pi}{\lambda} \vec{u}_r$: vecteur d'onde et λ : la longeur d'onde dans le milieu
 - le déphasage du à la propagation de l'onde de O à M : $\varphi_{O \to M} = -\frac{2\pi}{\lambda_0} (OM) = -\frac{2\pi}{\lambda_0} nOM = -\frac{2\pi}{\lambda_0} n \vec{u}_r . \vec{OM} = -\frac{2\pi}{\lambda} \vec{u}_r . \vec{OM}$ $\varphi_{O \to M} = \varphi(M) - \varphi(O) = -\vec{k} . \vec{OM}$
- Déphasage entre deux points situés sur deux rayons lumineux parallèles

- Il s'agit d'une source à l'infini (source laser) de direction \vec{u}_s
- $\varphi_{S \to M} = -\vec{k} . \vec{SM}$
- $\varphi_{S \to O} = -\vec{k} . \vec{SO}$

Optique

• $\varphi_{O \to M} = \varphi_{S \to M} - \varphi_{S \to O} = k (-\overline{SM} + \overline{SO}) = -k . \overline{OM}$

$$\rho_{O \to M} = \varphi(M) - \varphi(O) = -k.OM$$

- H : projection orthogonale de M sur le rayon passant par O
- $\varphi_{O \to H} = -\vec{k} . \vec{OH} = \vec{k} . \vec{OM}$

$$\varphi_{O \to H} = \varphi_{O \to M}$$

2.3 Théorème de Malus

•Surface équiphase : On appelle surface équiphase le lieu des points M dont la phase de la vibration lumineuse est constante à une date t donnée.

• Surface d'onde : On appelle surface d'onde, la surface définie par l'ensemble des points séparés de la source ponctuelle par le même chemin optique.

- si l'onde émise par une source ponctuelle est monochromatique $\omega = cte$, les surfaces équiphases se confondent avec les surfaces d'ondes
 - si le milieu est homogène les surfaces d'ondes sont des sphères de centre A
 - (AM) = (AP) = (AQ)

• Théorème de Malus-Dupin : Les surfaces d'ondes sont normales aux rayons lumineux

Soit un point A et son image A' par un système optique

- théorème de Malus : (AP) = (AQ)
- principe de retour inverse : (PA') =(QA')
- (AP) + (PA') = (AQ) + (QA')

• Conclusion : Le chemin optique entre deux points conjugués par un système optique stigmatique est indépendant du rayon qui les relie.

Σ

3 Intensité lumineuse ou éclairement

3.1 Source lumineuse

On distingue plusieurs types

- Source thermiques : lampe à incandescence, lampe à quartz iode et tube fluorescent
- Sources spectrales : source spectrale de soudium (Na), de mercure (Hg), de cadmium (Cd)...
- Source laser : source amplifiant la lumière par émission des radiations stimulées.

Ο Σ_1 Σ_3 Σ_2

A'

Systeme

Optique

3.2 Intensité lumineuse ou éclairement

- L'intensité lumineuse est la moyenne temporelle du vecteur de Poynting.
- la moyenne temporelle du vecteur de Poyenting est proportionnelle au carré du champ électrique

•Définition : On appelle l'intensité lumineuse (ou éclairement) la valeur moyenne du carré du champ électrique de l'onde à une constante *k* près(ou valeur moyenne de la vibration lumineuse à une constante près).

$$I(M, t) = k < E^{2}(M, t) > = k < S^{2}(M, t) >$$

•Remarque :

- pour simplifier les calculs on peut prendre k = 1
- l'intensité du champ $I_c(M, t)$ au point M à l'instant *t*, la grandeur

$$I_{c}(M, t) = \vec{E}(M, t).\vec{E}(M, t)$$

l'intensité lumineuse I(M, t) est la moyenne sur un temps de réponse d'un détecteur de I(M, t)

$$I(M, t) = \langle I_c(M, t) \rangle_{\tau_d}$$

 τ_d : temps de réponse du détecteur

3.3 Densité spéctrale de l'intensité

•Définition : On appelle l'intensité spéctrale (densité spéctrale de l'intensité) d'une source, l'intensité émise par cette source par unité de longueur ou par unité de fréquence

$$I_{\lambda} = \frac{dI}{d\lambda}$$
; $I_{\nu} = \frac{dI}{d\nu}$

 I_{ν_0}

l'intensité émise par une source

$$\mathbf{I} = \int_{\lambda_{min}}^{\lambda_{max}} \mathbf{I}_{\lambda}(\lambda) d\lambda = \int_{\nu_{min}}^{\nu_{max}} \mathbf{I}_{\nu}(\nu) d\nu$$

Rai à profil lorentzien

$$I_{\nu} = \frac{I_{\nu}^{0}}{1 + a^{2}(\nu - \nu_{0})^{2}}$$

a et I⁰_v sont des constantes positives

Raie à profil gaussien

Notion de trains d'onde

•Définition : Les sources lumineuses emettent une succession d'ondes sinusoïdales appelées trains d'onde dont la phase varie aléatoirement d'un train d'onde à l'autre.

$$\mathbf{E}(t) = \mathbf{E}_0 \cos(\omega t + \varphi)$$

 la longueur *l_c* du train d'onde est appelée longuer de cohérence temporelle et sa durrée τ_c est dite durée de cohérence temporelle

$$l_c = c.\tau_c$$

c : vitesse de la lumière dans le vide

• on associe à chaque raie centré sur une fréquence v_0 une succession de trains d'onde de même fréquence v_0 et de même amplitude ,chaque train d'onde a une longuer $l_c = c\tau_c$

Inteférences non localisées de deux ondes totalement cohérentes

Table des matières

1	Inte	férence entre deux ondes lumineuses	2
	1.1	Définition	2
	1.2	Superposition de deux ondes lumineuses	2
	1.3	Conditions d'interférence	3
	1.4	Dispositifs interférentiels	1
		1.4.1 Dispositif interférentiel par division du front d'onde	1
		1.4.2 Dispositif interférentiel par division d'amplitude	5
	1.5	Figure d'interférence	5
		1.5.1 Définitions	5
		1.5.2 Ordre d'interférence	3
		1.5.3 Contraste du figure d'interférence ou facteur de visibilité 6	3
		1.5.4 Observation longitudinale du figure d'interférence	3
		1.5.5 Observation transversale du figure d'interférence 6	3
2	Арр	ications 10)
	2.1	Trous de Young)
	2.2	Miroirs de Fresnel	L

1 Interférence entre deux ondes lumineuses

1.1 Définition

•Définition : On dit qu'il y a interférence entre deux ondes, si l'intensité lumineuse résultante en un point M est différente de la somme des intensités de chaque onde.

$$I \neq I_1 + I_2$$

- la définition se généralisent à N ondes : il y a interférence si I \neq I₁ + I₂ + ...I_N
- on se place dans le cadre de l'approximation scalaire de la lumière

1.2 Superposition de deux ondes lumineuses

Considérons deux sources ponctuelles monochromatiques émettant respectivement deux ondes lumineuses de pulsation ω_1 et ω_2

- ▶ au niveau des sources les vibrations lumineuses s'écrivent
 - $S_1(S_1, t) = a_{10} \cos(\omega_1 t \varphi_1)$
 - $S_2(S_2, t) = a_{20} \cos(\omega_2 t \varphi_2)$
- ▶ au point M les vibrations lumineuses s'écrivent

•
$$S_1(M, t) = S_1\left(S_1, t - \frac{(S_1M)}{c}\right) = a_{10}\cos\left(\omega_1\left(t - \frac{(S_1M)}{c}\right) - \varphi_1\right)$$

• $S_2(M, t) = S_2\left(S_2, t - \frac{(S_2M)}{c}\right) = a_{20}\cos\left(\omega_2\left(t - \frac{(S_2M)}{c}\right) - \varphi_2\right)$

en notation complexe

•
$$\underline{S}_1(M, t) = a_{10} \exp j \left(\omega_1 \left(t - \frac{(S_1M)}{c} \right) - \varphi_1 \right)$$

• $\underline{S}_2(M, t) = a_{20} \exp j \left(\omega_2 \left(t - \frac{(S_2M)}{c} \right) - \varphi_2 \right)$

Fonde lumineuse résultante

$$\underline{S}(M, t) = \underline{S}_1(M, t) + \underline{S}_2(M, t) = a_{10} \exp j \left(\omega_1 \left(t - \frac{(S_1 M)}{c} \right) - \varphi_1 \right) + a_{20} \exp j \left(\omega_2 \left(t - \frac{(S_2 M)}{c} \right) - \varphi_2 \right)$$

$$\underline{S}(\mathbf{M}, t) = a_{10} \exp j \left(\omega_1 t - \phi_1 \right) + a_{20} \exp j \left(\omega_2 t - \phi_2 \right)$$

•
$$\phi_1 = \frac{\omega_1}{c}(S_1M) + \phi_1$$

• $\phi_2 = \frac{\omega_2}{c}(S_2M) + \phi_2$

l'intensité lumineuse

$$I(\mathbf{M}, t) = k < S^{2}(\mathbf{M}, t) >_{t} = \frac{k}{2} < \left(\underline{S}(\mathbf{M}, t) \cdot \underline{S}^{*}(\mathbf{M}, t)\right) >_{t}$$

= $\frac{k}{2} \left(a_{10}^{2} + a_{20}^{2} + a_{10} \cdot a_{20} < \exp -j\left[(\omega_{2} - \omega_{1})t - (\phi_{2} - \phi_{1})\right] + a_{10} \cdot a_{20} \exp j\left[(\omega_{2} - \omega_{1})t - (\phi_{2} - \phi_{1})\right] >_{t}\right)$

•
$$I_1 = k < S_1^2(M, t) > = \frac{k}{2}a_{10}^2$$

• $I_2 = k < S_2^2(M, t) > = \frac{k}{2}a_{20}^2$
 $I(M, t) = I_1 + I_2 + 2\sqrt{I_1I_2} < \cos((\omega_2 - \omega_1)t - (\phi_2 - \phi_1))) >_t$

1.3 Conditions d'interférence

Synchronisation des ondes

- $<\cos((\omega_2 \omega_1)t (\phi_2 \phi_1)) >_t = 0$ si $\omega_2 \neq \omega_1$
- si $\omega_2 \neq \omega_1$ alors I(M, *t*) = I₁(M, *t*) + I₂(M, *t*) : pas d'interférence

• si les deux ondes ne sont pas synchrones ($\omega_2 \neq \omega_1$),elles ne peuvent plus interférer

• pour deux ondes synchrones on peut écrire

•
$$\phi(M, t) = \phi_2 - \phi_1 = \frac{2\pi}{\lambda_0} ((S_2M) - (S_1M)) + \phi_2 - \phi_1 = \frac{2\pi}{\lambda_0} \delta(M) + \phi_2 - \phi_1$$

• $\delta(M) = (S_2M) - (S_1M)$

 $\delta(M)$: différence de marche au point M des ondes issues de S₁ et S₂

Cohérence mutuelle des deux sources

• Définition : Deux sources S_1 et S_2 émettant deux vibrations $S_1(M, t)$ et $S_2(M, t)$ sont dites mutuellement cohérentes si la différence des déphasages au niveau des sources $(\varphi_2 - \varphi_1)$ est indépendant du temps en un point M,elles sont forcément synchrones.

- si φ = φ₂ φ₁ est une fonction aléatoire du temps donc < cos φ(M, *t*) >= 0 : pas d'interférence
- si les deux sources sont physiquement différentes (les atomes constituant la source S₁ sont différents de ceux constituant S₂),alors les trains d'ondes successifs émis par chacune des deux sources sont déphasés de manière aléatoire,donc ne peuvent plus interférer
- les rayons lumineux provenant d'une seule source lumineuse, et qui sont issues de deux trains d'ondes différents présentent un déphasage aléatoire donc ne peuvent plus interférer

Pour réaliser le phénomène d'interférence, il est nécessaire d'avoir deux sources S_1 et S_2 ponctuelles obtenues par dédoublemnt d'une source ponctuelle primaire S à l'aide d'un système adéquat appelé dispositif interférentiel.

Recouvrement des trains d'onde

- à t₁ : la source émet un train d'onde qui se divise en deux trains,chacun des deux trains suit un chemin différent
- à *t*₃ : le train d'onde (1) arrive au point
 M
- à t_4 : le train d'onde (2) arrive au point M
- $\Delta t = t_4 t_3$
- τ : la durré du train d'onde

- si $\tau \ge \Delta t$: il y a recouvrement des deux trains d'onde donc il y a interférence
- si $\tau < \Delta t$: pas de recouvrement des deux trains d'onde donc pas d'interférence

• Temps de cohérence τ_c : On appelle temps de coherence τ_c d'une source la durée moyenne des trains d'onde en un point donné, il est de l'ordre de grandeur de τ

• Longueur de cohérence temporelle l_c : On appelle longueur de coherence temporelle l_c d'une source la distance parcourue par la lumière (dans le vide) pendant τ_c

$$l_c = \tau_c.c$$

- la différence de marche (des chemins optiques) des deux trajets : $\delta = c.\Delta t$
- la longueur de cohérence temporelle : $l_c = \tau_c.c$

•Conclusion : Il y a recouvrement des deux trains d'ondes en un point M si

 $\delta \leq l_c$

• Ordre de grandeur de l_c

Laser hélium-néon (He-Ne)	Source spectrale Hg	Lumière blanche
$l_c = 30 cm$	$l_c = 3mm$	$l_c = 3 \mu m$

•Conclusion : La réalisation d'interférences lumineuses à deux ondes lumineuses suppose que les deux ondes :

- soient synchrones : $\omega_1 = \omega_2$
- soient mutuellement cohérentes : $\varphi_2 \varphi_1 = cte$
- soient issues d'um même train d'onde et se recouvrent en un point M : $\delta \leq l_c$

Dans ces conditions l'intensité lumineuse s'écrit :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\phi(M)) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\left(\frac{2\pi}{\lambda_0}\delta(M)\right)$$

1.4 Dispositifs interférentiels

1.4.1 Dispositif interférentiel par division du front d'onde

•Définition : Dans ce dispositif l'onde émise par la source est séparée géométriquement en deux (ou plusieurs) parties,qui suivent ensuite des trajets différents pour arriver en un point M où on observe le phénomène d'interférence.

Optique

MP2

•Exemples

- Trous de Young
- Miroirs de Fresnel
- Biprisme de Fresnel

• Champ d'interférence : On appelle champ d'interférence, la zone de l'espace ou les faisceaux issus du système optique (1) et du système optique (2) se coupent.

1.4.2 Dispositif interférentiel par division d'amplitude

•Définition : Dans ce dispositif, un même rayon issu d'une source S est séparé en deux parties (division énergétique), par exemple grace à l'utilisation d'une lame semi-réfléchissante.

•Exemple : Interférométre de Michelson

1.5 Figure d'interférence

1.5.1 Définitions

• Surface d'égale intensité : est l'ensemble des points M de l'espace pour lequel : I(M) = *cte*

- $I(M) = cte \Rightarrow \delta(M) = cte \Rightarrow S_2M S_1M = cte$
- les surfaces d'égales intensités sont des hyperboloïdes de foyers S_1 et S_2 et de révolution S_1S_2

Optique

• Franges d'interférence : On appelle franges d'interférence ,les lignes d'intersection des surfaces égales intensités et un écran plan.

- si l'écran est perpendiculaire à S_1S_2 (vision transversale) : les franges sont des anneaux
- si l'écran est parallèle à S_1S_2 (vision longitudinale) : les franges sont des arcs d'hyperboles, pratiquement rectilignes au voisinage du plan bissecteur de S_1S_2

1.5.2 Ordre d'interférence

• **Définition** : On appelle ordre d'interférence p(M) la quantité

$$p(M) = \frac{\phi(M)}{2\pi} = \frac{\delta(M)}{\lambda_0}$$

$I = I_1 + I_2 + 2\sqrt{(I_1I_2)}\cos(2\pi p(M))$

• Franges brillantes : les lignes d'intensité maximale : $I = I_{max}$ $I_{max} = I_1 + I_2 + 2\sqrt{I_1I_2} = (\sqrt{I_1} + \sqrt{I_2})^2 \Rightarrow \cos(2\pi p(M)) = 1 \Rightarrow 2\pi p(M) = 2\pi n \text{ avec}$ $n \in \mathbb{N}$

franges brillantes : p(M) = n

• Franges sombres : les lignes d'intensité minimale : $I = I_{min}$ $I_{min} = I_1 + I_2 - \sqrt{I_1 I_2} = (\sqrt{I_1} - \sqrt{I_2})^2 \Rightarrow \cos(2\pi p(M)) = (2n+1)\pi$

franges sombres :
$$p(M) = n + \frac{1}{2}$$

• Frange centrale : correspond à $\delta(M) = 0$

1.5.3 Contraste du figure d'interférence ou facteur de visibilité

•Définition : On appelle contraste d'une figure d'interférence C (ou facteur de visibilité) la quantité suivante

$$C = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

- le contraste est toujours compris entre 0 et 1
- pour avoir un meilleur contraste il faut : $C = C_{max} = 1 \Rightarrow I_{min} = 0 \Rightarrow I_1 = I_2$

• Conclusion : Pour obtenir des figures d'interférences bien contrastés, il faut faire interférer deux rayons de même intensité.

1.5.4 Observation longitudinale du figure d'interférence

- On place l'écran parallèle à l'axe S₁S₂
- *a* : la distance qui sépare les deux sources
- D : la distance entre les sources et l'écran

- ► Calcul de la différence de marche
 - dans le système (Oxyz) on a : $S_1\left(\frac{a}{2}, 0, 0\right)$ et $S_2\left(-\frac{a}{2}, 0, 0\right)$
 - $\delta(M) = (S_2M) (S_1M) = S_2M S_1M = \frac{S_2M^2 S_1M^2}{S_2M + S_1M}$

•
$$S_2M \approx S_1M \approx D$$

• donc $\delta(M) = \frac{S_2M^2 - S_M^2}{2D}$

- dans le système de coordonnées (O'XYZ) : M (X_M, Y_M, 0), S₁ $\left(\frac{a}{2}, 0, -D\right)$, S₂ $\left(-\frac{a}{2}, 0, -D\right)$
- $S_1 M^2 = \left(X_M \frac{a}{2}\right)^2 + Y_M^2 + D^2$

•
$$S_2 M^2 = \left(X_M + \frac{a}{2}\right)^2 + Y_M^2 + D^2$$

• en posant $X_M = x$

$$\delta(\mathbf{M}) = \frac{ax}{\mathbf{D}}$$

- les franges correspondent à $\delta = cte \Rightarrow x = cte$: les franges d'interférence sont des droites parallèles à Oy
- l'ordre d'interférence : $p(M) = \frac{\delta(M)}{\lambda}$

• franges brillantes (F.B) :
$$\frac{dx_p}{\lambda D} = p$$

$$x_p = p\left(\frac{\lambda \mathrm{D}}{a}\right)$$

• franges sombres (F.S) :
$$\frac{ax_p}{\lambda D} = p + \frac{1}{2}$$

$$x_p = \frac{\lambda D}{\lambda D} \left(p \right)$$

► Interfrange

• Définition : On appelle interfrange (*i*), la distance entre deux franges successives de même nature

•
$$i = x_{p+1} - x_p = \frac{\lambda D}{a}$$

interfrange :
$$i = \frac{\lambda D}{a}$$

7 / 12

1.5.5 Observation transversale du figure d'interférence

- on place l'écran parallèle à l'axe S_1S_2
- $a = S_1 S_2$
- D = OO' : la distance séparant entre entre O et l'écran

•Remarque : On retrouve la même résultat si le point M est à l'infini

© S.Boukaddid

Optique

- $\delta(M) = (S_2M) (S_1M) = (S_2H) + (HM) (S_1H)$
- théorème de Malus : $(HM) = (S_1M)$
- donc $\delta(M) = (S_2H) = S_2H$
- $\alpha << 1 r a d$ donc $\cos \alpha = 1 \frac{\alpha^2}{2}$

•
$$\delta(M) = a \cos \alpha = a \left(1 - \frac{\alpha^2}{2} \right)$$

•
$$\alpha^2 \approx \tan^2 \alpha = \frac{x^2 + y^2}{D^2}$$

$$\delta(\mathbf{M}) = a \left(1 - \frac{x^2 + y^2}{2\mathbf{D}^2} \right)$$

► Nature des franges

franges correspondent à $\delta(M) = cte \Rightarrow$ $x^2 + y^2 = cte$: les franges sont des anneaux concentriques (de centre O')

► Ordre d'interférence

•
$$p(\mathbf{M}) = \frac{\delta(\mathbf{M})}{\lambda_0} = \frac{a}{\lambda_0} \left(1 - \frac{x^2 + y^2}{2\mathbf{D}^2} \right)$$

• au centre x = y = 0 donc $x^2 + y^2 = 0 \Rightarrow p_0 = \frac{a}{\lambda_0}$

• donc l'ordre d'interférence

$$p(\mathbf{M}) = p_0 \left(1 - \frac{x^2 + y^2}{2\mathbf{D}^2} \right)$$

l'ordre d'interférence est maximal au centre

► Rayon R_p de l'anneau de l'ordre p

•
$$R_p = \sqrt{x^2 + y^2}$$

• $\frac{p(M)}{p_0} = 1 - \frac{R_p^2}{2D^2}$

$$R_p = D\sqrt{2\left(1 - \frac{p(M)}{p_0}\right)}$$

► différence de deux rayons de deux anneaux successives de même nature

•
$$R_{p-1} - R_p = D\sqrt{2\left(1 - \frac{p-1}{p_0}\right)} - D\sqrt{2\left(1 - \frac{p}{p_0}\right)} = \sqrt{2}D\left(\sqrt{1 - \frac{p-1}{p_0}} - \sqrt{1 - \frac{p}{p_0}}\right)$$

Optique

•
$$\frac{d(R_{p-1}-R_p)}{dp} = \frac{D}{p_0\sqrt{2}} \left[\frac{1}{\sqrt{1-\frac{p}{p_0}}} - \frac{1}{\sqrt{1-\frac{p-1}{p_0}}} \right]$$

 $d(R_{p-1}-R_p)$

•
$$\frac{u(\mathbf{R}_{p-1} - \mathbf{R}_p)}{dp} \ge 0$$
: lorsque p diminue ($\mathbf{R}_{p-1} - \mathbf{R}_p$) diminue aussi

• $R_{p-1} - R_p$ n'est plus constante, donc on peut plus parler de l'interfrange

• Conclusion : Les anneaux se resserent lorsqu'on s'éloigne du centre

2 Applications

2.1 Trous de Young

- D : la distance entre l'axe des sources S_1 et S_2 et l'écran
- d: distance entre la source primaire S et l'axe des sources S_1S_2
- x': l'abscisse de la source S

• Différence de marche $\delta(M)$

• $\delta(M) = (SS_2M) - (SS_1M)$

•
$$\delta(M) = (SS_2) + (S_2M) - (SS_1) - (S_1M) = (SS_2 - SS_1) + (S_2M - S_1M)$$

•
$$S_2M - S_1M = \frac{a_3}{D}$$

•
$$SS_2 - SS_1 = \frac{ax'}{d}$$

$$\delta(\mathbf{M}) = \frac{ax'}{d} + \frac{ax}{\mathbf{D}}$$

•Remarque : dans le cas particulier ou la source S est située sur l'axe Oz : $SS_2 = SS_1$ donc

$$\delta(\mathbf{M}) = \frac{ax}{\mathbf{D}}$$

10 / 12

MP2

Optique

• les franges : $\delta(M) = cte \Rightarrow x = cte$ les franges sont des droites parallèles à Oy

• la frange centrale :
$$\delta(M) = 0 \Rightarrow x_{fc} = -\frac{Dx'}{d}$$

• dans le cas particulier ou la source est situé sur l'axe OZ : $x_{fc} = 0$

•Conclusion : lorsqu'on déplace la source S avec une distance x' en haut (perpendiculaire à l'axe Oz), la frange centrale se déplace en bas (sens contraire) avec une distance $x = -\frac{Dx'}{d}$

• l'ordre d'interférence
$$p(M) = \frac{\delta(M)}{\lambda} = \frac{1}{\lambda} \left(\frac{ax'}{d} + \frac{ax}{D} \right)$$

• les franges brillantes :
$$p = \frac{1}{\lambda} \left(\frac{dx}{d} + \frac{dx_p}{D} \right)$$

$$x_p = p\left(\frac{\lambda \mathbf{D}}{a}\right) - \frac{x'\mathbf{D}}{d}$$

• les franges sombres :
$$p + \frac{1}{2} = \frac{1}{\lambda} \left(\frac{ax'}{d} + \frac{ax}{D} \right)$$

 $r_{n} = \frac{D\lambda}{D} \left(n + \frac{1}{D} \right) - \frac{D}{D}$

• 'interfrange :
$$i = x_{(p+1)} - x_p = \frac{\lambda D}{a}$$

$$i = \frac{\lambda D}{a}$$

2.2 Miroirs de Fresnel

- les deux miroirs d'arrêt commun font entre eux un angle $\alpha << 1 rad$
- D : la distance entre l'arrêt des miroirs et l'écran
- d: distance entre l'axe des sources S_1S_2 et l'arrêt des miroirs
- $a = S_1 S_2$ et x: l'abscisse du point M

•
$$\delta(M) = (SJM) - (SIM) = (SJ + JM + \frac{\lambda}{2}) - (SI + IM + \frac{\lambda}{2})$$

•
$$SI = S_1I$$
 et $SJ = S_2J$

© S.Boukaddid

- $\delta(\mathbf{M}) = \mathbf{S}_2 \mathbf{M} \mathbf{S}_1 \mathbf{M} = \frac{ax}{d+D}$
- on montre facilement que $a \approx 2\alpha d$

$$\delta(\mathbf{M}) = \frac{2\alpha dx}{d+\mathbf{D}}$$

• les franges : $\delta(M) = cte \Rightarrow x = cte$: droites parallèles à Oy $\delta(M) = 2\alpha d x$

• l'ordre d'interférence :
$$p(M) = \frac{O(M)}{\lambda} = \frac{2\alpha d.x}{\lambda(D+d)}$$

•
$$\delta P = 1 \Rightarrow 1 = \frac{2\alpha d.i}{\lambda(D+d)}$$

$$i = \frac{\lambda}{2\alpha} \left(1 + \frac{\mathrm{D}}{d} \right)$$

Cohérence de la lumière

Table des matières

1	Cohérence temporelle	2
	1.1Cas d'un doublet λ_1 et λ_2 : doublet jaune du soudium	2 3
2	Cohérence spatiale	4

1 Cohérence temporelle

•La cohérence temporelle consiste à étudier l'influence, sur la figure d'interférence, de la monochromaticité de la source primaire supposée pnctuelle.

Dans le cas d'une source ponctuelle :

•
$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(\frac{2\pi}{\lambda}\delta(M)\right)$$

• si
$$I_1 = I_2 = I_0$$

$$I(M) = 2I_0 \left[1 + \cos\left(\frac{2\pi}{\lambda}\delta(M)\right) \right]$$

1.1 Cas d'un doublet λ_1 et λ_2 : doublet jaune du soudium

- I_{λ} : intensité spéctrale de la source
- $\lambda_1 = 589 nm$ et $\lambda_2 = 589, 6nm$
- $\lambda_1 \neq \lambda_2$: les deux ondes n'interfèrent pas

•
$$I(M) = I_1(M) + I_2(M)$$

= $2I_0 \left[1 + \cos\left(\frac{2\pi}{\lambda_1}\delta(M)\right) \right] + 2I_0 \left[1 + \cos\left(\frac{2\pi}{\lambda_2}\delta(M)\right) \right]$

•
$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$$

•
$$\lambda_m = \frac{\lambda_1 + \lambda_2}{2}; \Delta \lambda = \lambda_2 - \lambda_1; \lambda_1 \lambda_2 \approx \lambda_m^2$$

$$I(M) = 4I_0 \left[1 + \cos\left(\pi \frac{\Delta \lambda}{\lambda_m^2} \delta\right) \cos\left(\frac{2\pi}{\lambda_m} \delta\right) \right]$$

- le contraste de la figure d'interférence dépend de δ

$$\mathbf{C} = |\mathbf{V}| = \left| \cos\left(\pi \frac{\Delta \lambda}{\lambda_m^2} \delta\right) \right|$$

avec V : visibilité des franges d'interférence

- le brouillage du figure s'explique par le fait que les deux figures sont en anti-coïncidence
- entre deux brouillages successifs

$$\Delta \delta = \frac{\lambda_m^2}{\Delta \lambda}$$

à l'aide de l'interféromètre de Michelson, on peut déterminer $\Delta\lambda$ facilement

1.2 Raie à profil rectangulaire de largeur Δv

• l'intensité spéctrale de la source pnctuelle : $I_v = \frac{dI_0}{dv}$

•
$$\Delta \nu \ll \nu_0$$

• l'intensité élementaire : $dI(M) = 2dI_0\left[1 + \cos\left(\frac{2\pi\nu}{c}\delta\right)\right] = 2I_v\left[1 + \cos\left(\frac{2\pi\nu}{c}\delta\right)\right]d\nu$

•
$$I(M) = 2I_v^0 \int_{v_0 - \frac{\Delta v}{2}}^{v_0 + \frac{\Delta v}{2}} \left[1 + \cos\left(\frac{2\pi v}{c}\delta\right) \right] dv$$

• $sinc\left(\frac{\pi\Delta v}{c}\delta\right) = \frac{\sin\left(\frac{\pi\Delta v}{c}\delta\right)}{\frac{\pi\Delta v}{c}\delta}$: fonctin sinus cardinal
 $I(M) = 2I_v^0 \Delta v \left[1 + sinc\left(\frac{\pi\Delta v}{c}\delta\right) \cos\left(\frac{2\pi v}{c}\delta\right) \right]$

• le contraste de la figure d'interférence

$$\mathbf{C} = \left| sinc\left(\frac{\pi\Delta\nu}{c}\delta\right) \right|$$

• Conclusion :Pour que le contraste de la figure d'interférence soit bon il est nécessaire que : $\delta(M) < l_c = c\tau = \frac{c}{\Delta v}$, ou l_c représente la longueur de cohérence temporelle.

2 Cohérence spatiale

La cohérence spatiale consiste à étudier l'influence, sur la figure d'interférence, de l'étendue de la source supposée monochromatique

Cas des trous de Young avec une fente

Considérons le dispositif des trous de Young avec une fente source de largeur b

- l'intensité par unité de longeur I_l = $\frac{dI_0}{dx'}$
- la fente éclaire les deux trous de Young

•
$$dI = 2dI_0 \left[1 + \cos\left(\frac{2\pi}{\lambda}\delta(M)\right) \right] = 2I_l dx' \left[1 + \cos\left(\frac{2\pi}{\lambda}\delta(M)\right) \right]$$

•
$$\delta(M) = \frac{ax'}{d} + \frac{ax}{D}$$

•
$$I = 2I_l^0 \int_{-b/2}^{b/2} \left[1 + \cos\left(\frac{2a\pi}{\lambda}\left(\frac{x'}{d} + \frac{x}{D}\right)\right) \right] dx'$$

= $2I_l^0 \left[b + \frac{\lambda d}{2\pi a} \left\{ \sin\frac{2\pi a}{\lambda}\left(\frac{x}{D} + \frac{b}{2d}\right) - \sin\frac{2\pi a}{\lambda}\left(\frac{x}{D} - \frac{b}{2d}\right) \right\} \right]$

•
$$\sin(A+B) - \sin(A-B) = 2\sin B\cos A$$

$$I(M) = 2I_l^0 b \left[1 + sinc\left(\frac{\pi ab}{\lambda d}\right) \cos\left(\frac{2\pi}{\lambda} \cdot \frac{ax}{D}\right) \right]$$

• le contraste de la figure d'interférence

$$\mathbf{C} = \left| sinc\left(\frac{\pi ab}{\lambda d}\right) \right|$$

- Cas n°1 : $0 < b < b_s = \frac{\lambda d}{a}$
 - la visibilité : $V = sinc(\frac{\pi ab}{\lambda d}) > 0$
 - le contraste de la figure d'interférence est maximale pour les valeurs de b tendant vers zéro
 - lorsque la largeur de la source augment (b augmente),le contraste de la figure diminue
- Cas n°2 : $b = b_s = \frac{\lambda d}{a}$
 - la visibilité : V = $sinc\left(\frac{\pi ab}{\lambda d}\right) = 0$
 - $I(M) = 2I_l^0 b$ est constante ,l'écran est donc uniformément éclairé
 - la longuer de cohérence spatiale est définie par

$$b_s = \frac{\lambda d}{a}$$

- $\blacktriangleright \text{ Cas } n^\circ 3: b_s < b < 2b_s$
 - la visibilité : V = $sinc\left(\frac{\pi ab}{\lambda d}\right) < 0$
 - il y a inversion de contraste : une frange brillante du 1^{er} cas devient sombre dans le 3^{ème} cas et inversement
 - le contraste de la figure d'interférence diminue
 - Dans le cas d'une source primaire ponctuelle, les interférences sont non localisées
 - Dans le cas d'une source primaire non ponctuelle (étendue) les interférences sont localisées

Interféromètre de Michelson

Table des matières

1	Inteféromètre de Michelson éclairé avec une source ponctuelle	2
	1.1 Principe de l'interféromètre de Michelson	2
	1.2 Equivalence à une lame d'air	2
	1.3 Equivalence à un coin d'air	3
2	Interféromètre de Michelson éclairé avec une source étendue	4
	2.1 Réglage en lame d'air : franges d'égales inclinaisons	4
	2.2 Réglage en coin d'air : franges d'égale épaisseur	6

1 Inteféromètre de Michelson éclairé avec une source ponctuelle

1.1 Principe de l'interféromètre de Michelson

L'interféromètre de Michelson est constitué :

- deux miroirs plans (M₁) et (M₂)
- une lame semi-réfléchissante infiniment mince appelée séparatrice
- la lame fait un angle de 45° avec Ox

1.2 Equivalence à une lame d'air

- **b** Différence de Marche $\delta(M)$
 - $\delta(M) = (SM)_2 (SM)_1 = (SKPNM) (SIJM) = (SK+KP+PN+NM) (SI+IJ+JM)$
 - SK = S'K; KP = KP'; PN = P'N; SI = S'I
 - $\delta(M) = (S'K + KP' + P'N + NM) (S'I + IJ + JM) = (S'P' + P'M) (S'J + JM)$
 - $(S'P') = (S'_2P'); (S'J) = (S'_1J)$
 - donc: $\delta(M) = (S'_2M) (S'_1M)$

© S.Boukaddid

Optique

$$\delta(M) = (S'_2M) - (S'_1M)$$

•Conclusion : L'interféromètre de Michelson réglé avec les miroirs parallèles est équivalent à une lame d'air.

Avec une source ponctuelle monochromatique,les interférences sont observables sur une vaste zone de l'espace,donc non localisées,et sont en formes d'anneaux sur un écran situé parallèlement aux miroirs.

1.3 Equivalence à un coin d'air

• On montre que la différence de marche est donnée par

 $\delta(M) = (S'_2M) - (S'_1M)$

• l'angle α entre les deux miroirs est faible : $\alpha << 1 r a d$

•Conclusion : L'interféromètre de Michelson réglé avec les miroirs inclinés est équivalent à un coin d'air.

Avec une source ponctuelle monochromatique,les interférences sont observables sur une vaste zone de l'espace,donc non localisées,et sont en formes rectlignes sur un écran situé parallèlement aux miroirs.

2 Interféromètre de Michelson éclairé avec une source étendue

2.1 Réglage en lame d'air : franges d'égales inclinaisons

- les inteférences sont localisées à l'infini
- On observe la figure d'interférence avec la maximum de contraste à l'infini
- pratiquement on observe cette figure d'interférence sur un écran loin de quelques mètres de l'interféromètre ou sur le plan focal image d'une lentille convergente
- Culcul de la différence de marche en un point M à l'infini

- $\delta(M) = (S'_2M) (S'_1M) = S'_2M S'_1M$
- $S'_1M = HM$
- $S'_2M S'_1M = S'_2H = 2e\cos i$

$$\delta(\mathbf{M}) = 2e\cos i$$

- ► Ordre d'interférence p(M)
 - l'ordre d'interférence en un point M

$$p(M) = \frac{\delta(M)}{\lambda} = \frac{2e\cos i}{\lambda}$$

• l'ordre d'interférence au centre (*i* = 0)

$$p_0 = \frac{2e}{\lambda} > p(\mathbf{M})$$

- *p*⁰ est quelconque ,donc l'intensité du centre est quelconque
- ► Calcul de l'intensité lumineuse au point M
 - l'intensité au point M : I(M) = I₁ + I₂ + 2 $\sqrt{I_1I_2}\cos\left(\frac{2\pi}{\lambda}\delta(M)\right)$
 - donc l'intensité

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(\frac{2\pi}{\lambda}2e\cos i\right)$$

• les franges sont telle que $I(M) = cte \Rightarrow i = cte$: les franges sont des anneaux d'égales inclinaisons localisées à l'infini

• Conclusion : Les franges d'interférences d'un interféromètre de Michelson, éclairé avec une source étendue en lame d'air, sont des franges d'égales inclinaisons (anneaux).

► Calcul du rayon R_p de l'anneau d'ordre d'interférence p

On s'interesse au cas ou on observe la figure d'interférence au plan focal image d'une lentille convergente de distance focale f'

- $\delta(M) = 2e\cos i$
- on travaille dans les conditions de Gauss : *i* faible

•
$$\cos i \approx 1 - \frac{i^2}{2}$$

$$\delta(\mathbf{M}) \approx 2e\left(1 - \frac{i^2}{2}\right)$$

Optique

• $\delta(M) = p(M)\lambda$

$$i\approx \sqrt{2\left(1-\frac{p\lambda}{2e}\right)}$$

•
$$R_p = f' \cdot \tan i \approx f' i$$

$$\mathbf{R}_p \approx f' \sqrt{2\left(1 - \frac{p\lambda}{2e}\right)}$$

- lorsqu'on s'éloigne du centre l'ordre d'interférence diminue,donc le rayon des anneaux augmente
- pour une frange donnée ($\delta(M) = cte$),lorsqu'on augmente la distance *e* entre les miroirs,le rayon de l'anneau augmente

• Conclusion : Pour un interféromètre de Michelson réglé en lame d'air, diminuer la distance relative entre les miroirs fait rentrer les anneaux et diminuer leur nombre sur l'écran

Contact optique

• lorsque $e = 0 \Rightarrow \delta = 0$: I(M) = I₁ + I₂ + 2 $\sqrt{I_1I_2} = cte$: l'écran devient uniformément éclairé : c'est la teinte plate, on dit qu'il y a contact optique

• Le contact optique est l'état particulier de l'interféromètre de Michelson quand e = 0 et $\alpha = 0$. L'écran est uniformément éclairé : teinte plate

2.2 Réglage en coin d'air : franges d'égale épaisseur

- on ne peut avoir des interférences bien contrastées que pour des rayons quasinormales aux miroirs
- les interférences sont localisées sur la coin (plus précisement sur le miroir (M1))

- pour observer la figure d'interférence il faut le projeter sur un écran à l'aide d'une lentille convergente
- ► Calcul de la différence de Marche

- $\delta(M) = (SM)_2 (SM)_1 = 2IJ$
- IJ = $\tan \alpha$.OM $\approx \alpha x$ avec OM = x

 $\delta(\mathbf{M}) \approx 2x.\alpha$

•Remarque : on peut obtenir facilement cette expression : $\delta(M) = 2e \cos i \operatorname{avec}$ $i << 1rad; e = IJ d'où \delta(M) \approx 2x.\alpha$

• les franges : $\delta(M) = cte \Rightarrow x = cte$: les franges d'égale intensité sont rectilignes parallèles à l'arête du coin d'air et localisées sur celui-ci.

arête

► Calcul de l'interfrange

- l'ordre d'inteférence : $p(M) = \frac{\delta(M)}{\lambda} = \frac{2\alpha x}{\lambda}$
- l'interfrange $i = x_{p+1} x_p$

• lorsque α diminue l'interfrange augmente
Diffraction des ondes lumineuses

Table des matières

1	Prir	ncipe d'Hygens-Fresnel	2
	1.1	Définitions	2
	1.2	Principe d'Hygens-Fresnel	3
2	Diffraction de Fraunhofer		
	2.1	Intensité diffractée par une pupille plane	3
	2.2	Propriétés de la diffraction de Fraunhofer	5
		2.2.1 Translation de la pupille diffractante dans son plan (Oxy)	5
		2.2.2 Théorème de Babinet	5
	2.3	Utilisation des lentille dans le montage de la diffraction de Fraunhoffer	6
3	Applications		
	3.1	Pupille rectangulaire	7
	3.2	Cas limite d'une fente infiniment fine	8
	3.3	Cas des fentes de Young	9
	3.4	Pouvoir de résolution -Critère de Rayleigh	10
4	Diffraction par un réseau plan		
	4.1	Définition	11
	4.2	Formule des réseaux	12
		4.2.1 Réseau par transmission	12
		4.2.2 Réseau par réflexion	13
	4.3	Amplitude et intensité diffractées à l'infini	13
	4.4	Pouvoir dispersif d'un réseau	14
	4.5	Minimum de déviation	14
	4.6	Pouvoir de résolution d'un réseau	14

1 Principe d'Hygens-Fresnel

1.1 Définitions

• Diffraction : La diffraction est un phénomène d'éparpillement de la lumière que l'on observe lorsqu'une onde est matériellement limitée.

- on observe le phénomène de la diffraction lorsque la dimension du diaphragme est de même ordre de grandeur de la longueur d'onde λ

•Pupille : On appelle pupille toute surface matérielle qui agit sur les ondes lumineuses. Elle influe sur l'amplitude et la phase d'une onde.

•Exemples

- > pupille plane : surface plane agissante sur les ondes
- > pupille circulaire : surface circulaire agissante sur les ondes

• Transparence complexe : On définit en tout point P d'une pupille la transparence complexe, comme le rapport entre les deux amplitudes de l'onde :

$$\underline{t}(\mathbf{P}) = \frac{\underline{\mathbf{A}}(\mathbf{P}_{ap})}{\mathbf{A}(\mathbf{P}_{av})}$$

- P_{av} : point proche de P juste avant la pupille
- P_{ap} : point proche de P juste après la pupille

• on note

$$t(\mathbf{P}) = \left| \mathbf{T}(\mathbf{P}) \right| e^{j\varphi(\mathbf{P})}$$

- si $|\underline{t}(\mathbf{P})| < 1$: on dit que la pupille est absorbante
- si $|\underline{t}(\mathbf{P})| = 1$: on dit que la pupille est transparente
- si $|\underline{t}(\mathbf{P})| = 0$: on dit que la pupille est opaque

• Deux pupilles sont dites complémentaires si la somme de leurs transparences est un, et leur produits est nul pout tout point P du plan

$$\underline{t}_1(\mathbf{P}) + \underline{t}_2(\mathbf{P}) = 1; \underline{t}_1(\mathbf{P}).\underline{t}_2(\mathbf{P}) = 0$$

deux pupiles complémentaires

1.2 Principe d'Hygens-Fresnel

l'énoncé du principe d'Hygens-Fresnel comporte deux contributions

• Contribution d'Hygens : la lumière se propage de proche en proche. Chaque élément de surface atteint par elle se comporte comme une source secondaire qui émet des ondelettes sphériques dont l'amplitude est proportionnelle à cet élément.

•Contribution de Fresnel : L'amplitude complexe de la vibration lumineuse en un point M est la sommes des amplitudes complexes des vibrations lumineuses produites par toutes les sources secondaires. On dit que toutes ces vibrations intefèrent pour former la vibration au point considéré.

• l'amplitude complexe de l'onde diffractée en un point P

$$d\underline{\mathbf{A}}(\mathbf{P}) = k.\underline{\mathbf{A}}_i(\mathbf{P}).d\mathbf{S}_p$$

avec \underline{A}_i : l'amplitude complexe de l'onde incidente

- les sources secondaires sont cohérentes entre elles
- On distingue entre deux types de diffraction :
 - diffraction de Fresnel : diffraction à une distance finie (distance petite)
 - diffraction de Fraunhofer : diffraction à l'infinie (distance grande))

2 Diffraction de Fraunhofer

2.1 Intensité diffractée par une pupille plane

Optique

•
$$\vec{k}_i = \frac{2\pi}{\lambda} \vec{u}_i; \vec{k}_d = \frac{2\pi}{\lambda} \vec{u}_d$$

- l'amplitude élémentaire au point P : $d\underline{A}(P) = k.\underline{A}_i(P_{ap})dS_p$
- $\underline{\mathbf{A}}(\mathbf{P}_{ap}) = \underline{t}(\mathbf{P})\underline{\mathbf{A}}(\mathbf{P}_{av})$

$$d\underline{\mathbf{A}}(\mathbf{P}) = k.\underline{t}(\mathbf{P})\underline{\mathbf{A}}_i(\mathbf{P}_{av})d\mathbf{S}_p$$

- $\underline{A}_i(\mathbf{P}_{av}) = \underline{A}_0 \exp i(-\overrightarrow{k}_i.\overrightarrow{SP})$
- en un point M : $d\underline{A}(M) = d\underline{A}(P) \exp i(-\overrightarrow{k}_d.\overrightarrow{PM})$
- $d\underline{A}(M) = k.\underline{A}_0.\underline{t}(P).\exp i(-\overrightarrow{k}_i.\overrightarrow{SP}).\exp i(-\overrightarrow{k}_d.\overrightarrow{PM})dS_p$
- $\vec{k}_i(\vec{SP}) = \vec{k}_i(\vec{SO} + \vec{OP}); \vec{k}_d(\vec{PM}) = \vec{k}_d.(\vec{PO} + \vec{OM})$
- $d\underline{A}(M) = k.\underline{A}_0.\underline{t}(P) \exp i(-\overrightarrow{k}_i \overrightarrow{SO} \overrightarrow{k}_d.\overrightarrow{OM}). \exp \left[i(\overrightarrow{k}_d k_i)\overrightarrow{OP}\right] dS_p$

•
$$\underline{\mathbf{K}} = k.\underline{\mathbf{A}}_0.\exp\left[-i(\vec{k}_i \overrightarrow{\mathrm{SO}} + \vec{k}_d.\overrightarrow{\mathrm{OM}})\right]$$

• $d\underline{A}(M) = \underline{K} \cdot \underline{t}(P) \cdot \exp\left[i(\overrightarrow{k}_d - k_i)\overrightarrow{OP}\right] dS_p$

$$\underline{\mathbf{A}}(\mathbf{M}) = \underline{\mathbf{K}} \iint_{pupille} \underline{t}(\mathbf{P}) \cdot \exp\left[i(\overrightarrow{k}_d - k_i)\overrightarrow{\mathbf{OP}}\right] d\mathbf{S}_p$$

• l'intensité diffractée par la pupille : $I(M) = C.\underline{A}(M).\underline{A}^{*}(M)$

$$I(M) = k' \iint_{pupille} \underline{t}(P) \cdot \exp\left[i(\overrightarrow{k}_d - k_i)\overrightarrow{OP}\right] dS_p \cdot \iint_{pupille} \underline{t}^*(P) \cdot \exp\left[-i(\overrightarrow{k}_d - k_i)\overrightarrow{OP}\right] dS_p$$

- le plan de la pupille est noté Oxy, le vecteur \overrightarrow{OP} a pour coordonnées (x,y,0)
- l'amplitude diffractée au point M

$$\underline{A}(\mathbf{M}) = \underline{\mathbf{K}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp\left[i(\overrightarrow{k}_d - \overrightarrow{k}_i)\overrightarrow{\mathbf{OP}}\right] dx dy$$

• $\vec{k} = \vec{k}_i - \vec{k}_d$, le vecteur \vec{k} a pour coordonnées (k_x, k_y, k_z)

•
$$(\vec{k}_i - \vec{k}_d).\vec{OP} = \vec{k}.\vec{OP} = k_x.x + k_y.y$$

$$\underline{A}(k_x, k_y) = \underline{K} \cdot \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp\left[-i(k_x \cdot x + k_y \cdot y)\right] dx dy$$

• $\vec{u}_d(\alpha,\beta,\gamma); \vec{u}_i(\alpha_0,\beta_0,\gamma_0)$

$$\underline{A}(\mathbf{M}) = \underline{\mathbf{K}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp i \left[\frac{2\pi}{\lambda} \left((\alpha - \alpha_0) x + (\beta - \beta_0) y \right) \right] dx dy$$

• $u = \frac{\alpha}{\lambda}$; $v = \frac{\beta}{\lambda}$; $u_0 = \frac{\alpha_0}{\lambda}$; $v_0 = \frac{\beta_0}{\lambda}$ sont appelées les fréquences spatiales, car elles sont homogènes à l'inverse de la période spatiale λ

$$\underline{A}(\mathbf{M}) = \underline{\mathbf{K}} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp\left(2\pi i \left[(u - u_0)x + (v - v_0)y\right]\right) dx dy$$

• donc

$$\underline{\mathbf{A}}(\mathbf{M}) = \underline{\mathbf{K}} \cdot \underline{\mathbf{T}}(u - u_0, v - v_0)$$

4 / 15

avec

$$\underline{T}(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x,y) \exp\left(2\pi i \left[ux + vy\right]\right) dx dy$$

• $\underline{T}(u, v)$ est appelée la transformée de Fourier de la transmittance pupillaire $\underline{t}(x, y)$

2.2 Propriétés de la diffraction de Fraunhofer

2.2.1 Translation de la pupille diffractante dans son plan (Oxy)

•
$$\underline{T}(u, v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp(2\pi i [ux + vy]) dx dy$$

• OP =
$$x e_x + y e_y$$

 $f^{+\infty} f^{+\infty}$

•
$$\underline{T}_1(u, v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{t}(x, y) \exp\left(2\pi i \left[ux_1 + vy_1\right]\right) dx dy$$

•
$$\overrightarrow{OP}_1 = x_1 \overrightarrow{e}_x + y_1 \overrightarrow{e}_y = \overrightarrow{OO_1} + \overrightarrow{O_1P_1} = \overrightarrow{O_1O} + \overrightarrow{OP}$$

•
$$x_1 = x + x_0; y_1 = y + y_0$$

•
$$\underline{t}_1(x, y) = \underline{t}(x, y)$$

•
$$\underline{\mathbf{T}}_{1}(u,v) = \exp\left[2\pi i(ux_{0}+vy_{0})\right] \iint \underline{t}(x,y) \exp\left[2\pi i(ux+vy)\right] dxdy$$
$$\underline{\mathbf{T}}_{1}(u,v) = \underline{\mathbf{T}}(u,v) \exp\left[2\pi i(ux_{0}+vy_{0})\right]$$

• l'intensité diffracté : $I_1(M) = k.\underline{A}(M).\underline{A}^* = I_1(M)$

• La figure de diffraction est inchangée par translation de la pupille dans son plan

2.2.2 Théorème de Babinet

- \underline{t}_1 et \underline{t}_2 sont deux pupilles complémentaires : $\underline{t}_1 + \underline{t}_2 = 1$
- S' est l'image de la source S'
- $\underline{A}_{og}(M)$: l'amplitude obtenue sans pupille dans le cadre de l'optique géométrique,donc $\underline{A}_{og}(M) = 0$ pout tout point $M \neq S'$
- $\underline{A}_1(M)$: l'amplitude diffractée par la pupille 1
- $\underline{A}_2(M)$: l'amplitude diffractée par la pupille 2

Optique

• donc

 $\underline{A}_1(M) + \underline{A}_2(M) = \underline{A}_{og}(M)$

• pour tout point $M \neq S' : \underline{A}_1(M) = -\underline{A}_1(M)$

 $I_1(M) = I_2(M)$ pout tout point $M \neq S'$

• Théorème de Babinet : La figure de diffraction de deux pupilles complémentaires est la même sauf en image géométrique de la source

2.3 Utilisation des lentille dans le montage de la diffraction de Fraunhoffer

• dans le système $F_1 x y z$: $S(x_s, y_s, 0); O_1(0, 0, -f'_1)$

•
$$\vec{u}_i = \frac{\vec{SO}_1}{SO_1} = -\frac{x_s \vec{e}_x + y_s \vec{e}_y - f_1' \vec{e}_z}{O_1 S} = \alpha_0 \vec{e}_x + \beta_0 \vec{e}_y + \gamma_0 \vec{e}_z$$

• dans le système F'_2XYz : M(X, Y, 0); $O_2(0, 0, -f'_2)$

•
$$\vec{u}_d = \frac{\overrightarrow{O_2M}}{O_2M} = \frac{X\vec{e}_x + Y\vec{e}_y + f'_2\vec{e}_z}{O_2M} = \alpha \vec{e}_x + \beta \vec{e}_y + \gamma \vec{e}_z$$

• dans l'approximation de Gauss : $O_1 S \approx f'_1; O_2 M \approx f'_2$

• donc
$$\vec{u}_i = \begin{vmatrix} \alpha_0 \approx -\frac{x_s}{f_1'} \\ \beta_0 \approx -\frac{y_0}{f_1'} \\ \gamma_0 \approx 1 \end{vmatrix}$$
 $\begin{vmatrix} \alpha \approx \frac{x}{f_2'} \\ \beta \approx \frac{Y}{f_2'} \\ \gamma \approx 1 \end{vmatrix}$

3 Applications

3.1 Pupille rectangulaire

- la transmittance de la fente rectangulaire $\begin{cases} \underline{t}(x, y) = 1; |x| \leq \frac{a}{2}; |y| \leq \frac{b}{2} \\ \underline{t}(x, y) = 0; ailleur \end{cases}$
- en incidence normale $u_0 = v_0 = 0$

$$A(u, v) = k.ab.Sinc(\pi ua).Sinc(\pi vb)$$

•
$$SincX = \frac{sinX}{X}$$
: fonction sinus cardinal de X

• l'intensité lumineuse : $I(u, v) = k' \underline{A}(u, v) . \underline{A}^*(u, v)$

•
$$I(0,0) = k' a^2 b^2$$

$$I(u, v) = I(0, 0).Sinc^{2}(\pi ua).Sinc^{2}(\pi vb)$$

•
$$u = \frac{\alpha}{\lambda}; v = \frac{\beta}{\lambda}$$

-8

-6

-10

Optique

MP2

Représentation de la fonction Sinc²

- la figure de diffraction est constitué d'une tache centrale, et des taches secondaires
- la tache centrale est centrée sur l'image géométrique de la source
- la largeur de la tache centrale est deux fois plus grande que celle des taches secondaires
- la maximum de l'intensité maximale est obtenue en tache centrale
- les extensions de la tache centrale : $\Delta u = \frac{2}{a}$; $\Delta v = \frac{2}{b}$
- les extensions angulaires de la tache centrale : $2\frac{\lambda}{a}$; $2\frac{\lambda}{b}$

3.2 Cas limite d'une fente infiniment fine

dans le cas d'une fente infiniment fine

•
$$b >> a$$

• $\underline{t}(x) = \begin{cases} 1; |x| \leq \frac{a}{2} \\ 0; ailleur \end{cases}$

• l'amplitude de l'onde diffractée

$$\underline{A}(u) = \underline{k}.a.Sinc(\pi ua)$$

l'intensité de l'onde diffractée

$$I(u) = I(0).Sinc^{2}(\pi ua)$$

• avec I(0) = $k^2 a^2$

u

- la largeur de la tache centrale : $\Delta u = \frac{2}{a}$
- la tache centrale est deux fois plus large que les taches secondaires
- la tache centrale est centrée sur l'image géométrique de la source
- La figure de diffraction de Fraunhoffer entoure l'image géométrique de l'objet lumineux

3.3 Cas des fentes de Young

•
$$\delta(\mathbf{M}) = \frac{ax}{f_2'}$$

• représentation de l'intensité en fonction de u

- il s'agit d'une figure de diffraction modulée par l'interférence
- l'ordre d'interférence : $p(M) = \frac{\delta(M)}{\lambda} = \frac{ax}{\lambda f'_2}$
- l'interfrange correspond à $\Delta p = 1$ donc $i = \frac{\lambda f_2'}{a}$
- augmenter l'écartement des fentes a pour effet de réduire l'interfrange des interférences
- élargir simultanément les deux fentes d'Young a pour effet de rétrécir la figure de diffraction ,il y a donc moins des franges d'interférences dans le lobe central de diffraction

• pour des fentes très fines $b \to 0 \Rightarrow \operatorname{Sinc}^2(\pi u b) \to 1 : I(x) = \frac{I_0}{2} \left[1 + \cos\left(\frac{2\pi x a}{\lambda f_2'}\right) \right]$

3.4 Pouvoir de résolution - Critère de Rayleigh

- La diffraction est un facteur limitant le pouvoir de résolution d'un instrument optique
- la figure de diffraction de Fraunhoffer entour l'image géométrique d'un objet lumineux
- l'image d'un point lumineux n'est plus un point mais une tache de diffraction qui entour ce point
- si deux images sont très proche et les taches de diffraction sont suffisamment larges, un observateur aura du mal à distinguer entre les deux taches. On admet le critère de séparation des images dit critère de Rayleight :

• Critère de Rayleigh : Les images de deux objets lumineux très proches ne peuvent être séparés que si le maximum de la figure de diffraction autour de l'image géométrique de l'une des objets soit situé sur le premier minimum de la figure de diffraction donnée par l'autre objet.

limite de séparation des deux images

- (*a*) : les deux sources sont largement séparées
- (b) : les deux sources sont tout juste résolues (limite de Rayleigh)
- (*c*) : les deux sources ne sont plus résolues

(a)

4 Diffraction par un réseau plan

4.1 Définition

• Définition : Un réseau est une surface diffractante sur lequelle un motif diffractant est répété un grand nombre de fois. La période spatiale est appelée pas du réseau.

- le réseau le plus simple est constitué par un ensemble de fentes parallèles réalisant une transmittance en amplitude périodique
- Actuellement, on réalise d'excellents réseaux à partir de l'interférence d'ondes planes : ce sont les réseaux holographiques (réseaux sinusoïdaux dont la transmittance est proportionnelle à l'intensité du phénomène d'interférences).

- il existe deux types de réseau :
 - réseau par transmission
 - réseau par réflexion
- souvent le pas de réseau est donné en traits/mm; par exemple un réseau de 100traits/mm correspond à un réseau de $a = 10 \mu m$
- pour un réseau de Ntraits/mm

$$a = \frac{1}{N}(mm)$$

4.2 Formule des réseaux

4.2.1 Réseau par transmission

Considérons un réseau de N fentes parallèles. a représente le pas du réseau

- $\delta(M) = (SO_1M) (SO_2M) = (SO_1 + O_1H_1 + H_1M) (SH_2 + H_2O_2 + O_2M)$
- $(SO_1) = (SH_2); (O_2M) = (HM); O_2O_1H_2 = \theta_0$
- $\delta(M) = (O_1H_1) (O_2H_2) = O_1H_1 O_2H_2 = a(\sin\theta \sin\theta_0)$

 $\delta(\mathbf{M}) = a(\sin\theta - \sin\theta_0)$

• pour que la lumière diffractée dans une direction θ soit observable, il faut que les interférences entre les ondes issues de deux motifs succeeifs soient constructives, on obtient la formule des réseaux :

 $a(\sin\theta - \sin\theta_0) = m\lambda$

m : représente l'ordre d'interférence , $m \in \mathbb{Z}$

4.2.2 Réseau par réflexion

•
$$\delta(\mathbf{M}) = (\mathbf{SO}_1\mathbf{M}) - (\mathbf{SO}_2\mathbf{M}) = (\mathbf{O}_1\mathbf{H}_1) - (\mathbf{O}_2\mathbf{H}_2) = a(\sin\theta + \sin\theta_0)$$
$$a(\sin\theta + \sin\theta_0) = m\lambda$$

4.3 Amplitude et intensité diffractées à l'infini

- pour une fente fine : $\underline{A}(u) = \underline{k} \iint_{pupille} \underline{t}(x) \exp [2\pi i (u u_0)x] dx dy$
- pour une seule fente fine on a : $\underline{A}_d(u) = A_0 \operatorname{Sinc}(u')$; $u' = \frac{\pi b(\sin\theta \sin\theta_0)}{\lambda}$
- la relation fondamentale du réseau : $a(\sin \theta_k \sin \theta_0) = k\lambda$
- le déphasage d'une fente à la suivante est constant : $\varphi = \frac{2\pi}{\lambda} \delta = \frac{2\pi}{\lambda} a (\sin \theta \sin \theta_0)$
- l'amplitude totale

$$\underline{\mathbf{A}}(\theta) = \mathbf{A}_d (1 + e^{-i\varphi} + e^{-2i\varphi} + \dots + e^{-(N-1)i\varphi}) = \mathbf{A}_d \frac{1 - e^{-Ni\varphi}}{1 - e^{-i\varphi}}$$

$$\underline{A}(\theta) = \mathrm{NA}_d e^{-i\left(\frac{\mathrm{N}-1}{2}\phi\right)} \frac{\mathrm{SIII}(\mathrm{N}\phi/2)}{\mathrm{N}\sin(\phi/2)}$$

- $R(\phi) = \frac{\sin(N\phi/2)}{N\sin(\phi/2)}$: s'appelle fonction réseau
- l'intensité lumineuse est :

$$I(\theta) = N^2 I_0 Sinc^2 (x)$$

Fonction réseau N = 8

Fonction réseau carré N = 8

- Sinc(u') : terme de diffraction
- $\left(\frac{\sin(N\phi/2)}{N\sin(\phi/2)}\right)^2$: terme d'interférence à N ondes

4.4 Pouvoir dispersif d'un réseau

•Définition : On définit le pouvoir de résolution d'un réseau par

$$D_a = \frac{d\theta}{d\lambda}$$

- $a(\sin\theta \sin\theta_0) = m\lambda$; *m*: l'ordre d'interférence
- $a\cos\theta d\theta = md\lambda$
- le pouvoir dispersif d'un réseau ,dans le voisunage de l'ordre m

$$D_a = \frac{d\theta}{d\lambda} = \frac{m}{a\cos\theta_m} = \frac{1}{\lambda} \frac{\sin\theta_m - \sin\theta_0}{\cos\theta_m}$$

• la dispersion est plus forte lorsque l'ordre est élevé et le pas faible

4.5 Minimum de déviation

- dans un réseau par transmission la déviation : $D = \theta - \theta_0$

•
$$\frac{d\mathrm{D}}{d\theta_0} = \frac{d\theta}{d\theta_0} - 1$$

•
$$a(\sin\theta - \sin\theta_0) = m\lambda \Rightarrow \cos\theta d\theta - \cos\theta_0 d\theta_0 = 0$$

•
$$\frac{d\theta}{d\theta_0} = \frac{\cos\theta_0}{\cos\theta}$$

•
$$\frac{dD}{dD} = \frac{\cos\theta_0}{10} - 1$$

$$d\theta_0 = \cos\theta$$

- $\frac{d^2 D}{d\theta_0^2} = \frac{-\cos\theta\sin\theta_0 + \cos\theta_0\tan\theta}{\cos^2\theta}$
- $\frac{dD}{d\theta_0} = 0 \Rightarrow \theta = -\theta_0$ (le cas $\theta = \theta_0$) correspond au rayon non diffracté
- en plus on a $\frac{d^2 D}{d\theta_0^2} = -2 \tan \theta_0 > 0$, la déviation donc est minimale pour $\theta = -\theta_0$ et vaut $D_m = 2\theta_0$

4.6 Pouvoir de résolution d'un réseau

•Définition : On définit le pouvoir de résolution d'un réseau de N traits par

$$P.R = \frac{\lambda}{\Delta \lambda} = mN$$

 $\Delta\lambda$: la petite valeur de $\lambda' - \lambda$ pour laquelle deux longueurs d'onde voisines justes séparées d'après le critère de Rayleigh

•
$$\sin\theta = \sin\theta_0 + m\frac{\lambda}{a}$$

- $\Delta(\sin \theta) = m \frac{\Delta \lambda}{a}$ à la limite de résolution : $\frac{\lambda}{Na} = m \frac{\Delta \lambda}{a}$ $P = \frac{\lambda}{a} = mI$

$$\mathbf{R} = \frac{\mathbf{\Lambda}}{\Delta \lambda} = m\mathbf{N}$$