ÉCOLE NATIONALE SUPÉRIEURE DE STATISTIQUE ET D'ÉCONOMIE APPLIQUÉE ENSEA - ABIDJAN

ÉCOLE NATIONALE DE LA STATISTIQUE ET DE L'ANALYSE ÉCONOMIQUE ENSAE - DAKAR

INSTITUT
SOUS-RÉGIONAL DE
STATISTIQUE ET
D'ÉCONOMIE APPLIQUÉE
ISSEA - YAOUNDÉ

AVRIL 2021

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES CYCLE LONG / ANALYSTES STATISTICIENS

ISE cycle long / AS

PREMIÈRE COMPOSITION DE MATHÉMATIQUES

(Durée de l'épreuve : 4 heures)

Attention!

L'exercice 1 de la présente épreuve est <u>obligatoire</u> et toute note strictement inférieure à 6 à cet exercice est éliminatoire (chaque question de l'exercice 1 étant notée sur 1 point).

Toutefois cet exercice n'entre que pour un cinquième dans la note finale de cette première épreuve de mathématiques.

Dans tous les exercices, ${\bf R}$ désigne l'ensemble des nombres réels, ${\bf C}$ l'ensemble des nombres complexes et ln le logarithme népérien. On rappelle les relations

$$\cos^{2}\left(\frac{\theta}{2}\right) = \frac{1+\cos\theta}{2}$$
$$\sin\theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$$

valables pour tout réel θ .

On rappelle enfin la limite classique:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Exercice 1

1. Calculer
$$\int_{\pi/6}^{\pi/4} \cos^2 x (\sin x) dx$$
.

En posant $u = \cos x$, il vient $u' = -\sin x$ et

$$\int_{\pi/6}^{\pi/4} \cos^2 x (\sin x) dx = \int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{2}}{2}} -u^2 du$$
$$= \left[-\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{2}}{2}}$$
$$= \frac{\sqrt{3}}{8} - \frac{\sqrt{2}}{12}.$$

2. Exprimer la dérivée de la fonction $f(x) = \frac{\sin x^3}{\cos x}$ comme une fonction de $\sin x$.

$$f'(x) = \frac{3\sin^2 x \cos^2 x + \sin^3 x \sin x}{\cos^2 x}$$
$$= \frac{3\sin^2 x (1 - \sin^2 x) + \sin^4 x}{1 - \sin^2 x}$$
$$= \frac{-\sin^2 x (3 - 2\sin^2 x)}{1 - \sin^2 x}$$

3. Donner la limite en $-\infty$ de la fonction $f(x) = \sqrt{2x^2 + x + 1} + x$. Tout d'abord, $2x^2 + x + 1 > 0$ pour tout réel x. De plus,

$$\sqrt{2x^2 + x + 1} + x = |x|\sqrt{2 + \frac{1}{x} + \frac{1}{x^2}} + x$$
$$= x\left(1 - \sqrt{2 + \frac{1}{x} + \frac{1}{x^2}}\right)$$

dès que x < 0. Par passage à la limite, comme $1 - \sqrt{2} < 0$, on a $\lim_{x \to -\infty} f(x) = +\infty$.

4. Donner le comportement au voisinage de x = 0 de la fonction $f(x) = \sin x \ln(x - x^2)$. Pour 0 < x < 1, on a

$$f(x) = \sin x \ln(x) + \sin x \ln(1-x).$$

Le second terme du membre de droite tend vers 0, et pour le premier on a

$$\sin x \ln(x) = \frac{\sin x}{x} x \ln x.$$

 $\sin x/x$ tend vers 1 quand $x\to 0$, et par croissance comparée $x\ln x$ tend vers 0, donc finalement la limite recherchée vaut 0.

5. Ecrire le nombre complexe z = -3 + 3i sous forme trigonométrique.

$$z = 3\sqrt{2} \left(\cos \left(\frac{3\pi}{4} \right) + i \sin \left(\frac{3\pi}{4} \right) \right).$$

6. Si on vous demande d'étudier les variations de la fonction

$$f(x) = \frac{2x}{e^x - e^{-x}},$$

expliquer quel intervalle d'étude vous choisissez, et comment vous étendez vos résultats à l'ensemble du domaine de définition de f.

On remarque que f est une fonction paire définie sur ${\bf R}$ privé de l'origine. On peut donc faire l'étude de f sur $]0,+\infty[$ et on complète par symétrie par rapport à l'axe d'équation x=0.

7. Une urne contient trois boules numérotées respectivement 0, 1 et 2. On tire au hasard uniforme et avec remise deux fois une boule, et on fait le produit X des chiffres obtenus. Pour toute valeur de k pertinente, donner la probabilité pour que X soit égal à k et en déduire l'espérance de X.

X prend la valeur 1 si la boule numérotée 1 est tirée 2 fois, c'est-à-dire avec probabilité 1/9. De même, X prend la valeur 4 si la boule numérotée 2 est tirée 2 fois, donc là aussi avec probabilité 1/9. X vaut 2 si on a tiré soit 1 puis 2, soit 2 puis 1, donc avec probabilité 2/9. Dans tous les autres cas, c'est-à-dire avec probabilité 1-1/9-1/9-2/9=5/9, X vaut 0. L'espérance de X est donc égale à $0 \times 5/9 + 1 \times 1/9 + 2 \times 2/9 + 4 \times 1/9 = 1$.

8. On considère la suite définie par $u_0 = 4$ et $u_{n+1} = \frac{1}{2}(u_n^2 + 4)$. Cette suite est-elle monotone? Est-elle convergente?

$$u_{n+1} - u_n = \frac{1}{2}(u_n^2 - 2u_n + 4).$$

Cette expression est de signe constamment positif car l'équation $x^2 - 2x + 4 = 0$ n'admet pas de racine réelle. La suite $(u_n)_{n\geq 0}$ est donc croissante. Si elle convergeait, sa limite vérifierait $l^2 - 2l + 4 = 0$ or on vient de voir que c'était impossible : la suite diverge donc vers $+\infty$.

9. En utilisant la double inégalité (qu'on ne cherchera pas à démontrer)

$$\frac{n}{\sqrt{n^4+n}} \leq \frac{n}{\sqrt{n^4+k}} \leq \frac{n}{\sqrt{n^4+1}}$$

valable pour tout entier n > 0 et pour tout entier k tel que $1 \le k \le n$, étudier la convergence de la suite de terme général

$$u_n = \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}}.$$

D'après la double inégalité de l'énoncé, on a

$$\sum_{k=1}^{n} \frac{n}{\sqrt{n^4 + n}} \le \sum_{k=1}^{n} \frac{n}{\sqrt{n^4 + k}} \le \sum_{k=1}^{n} \frac{n}{\sqrt{n^4 + 1}}$$

soit

$$\frac{n^2}{\sqrt{n^4 + n}} \le \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}} \le \frac{n^2}{\sqrt{n^4 + 1}}$$

ou encore

$$\frac{1}{\sqrt{1+\frac{1}{n^3}}} \le \sum_{k=1}^n \frac{n}{\sqrt{n^4+k}} \le \frac{1}{\sqrt{1+\frac{1}{n^4}}}$$

et d'après le théorème de comparaison, la suite de terme général u_n converge vers 1.

10. Résoudre l'equation $x^3 + 6x^2 - x = 0$ dans **R**, puis dans **C**. On a soit x=0, soit $x^2 + 6x^2 - 1 = 0$, équation qui admet les racines réelles $-3 - \sqrt{10}$ et $-3 + \sqrt{10}$. Les racines complexes sont les mêmes que les racines réelles.

Exercice 2 Pour $a \in \mathbf{R}$, on considère la fonction de la variable réelle

$$f_a(x) = ax^3 - 3(a+1)x^2 + x + 1$$

- 1. Dans cette partie, on pose a=-1/3 et pour simplifier on note $f_{-\frac{1}{2}}=f$.
 - (a) Calculer f', et en déduire les intervalles de croissance de f. On a donc

$$f(x) = -\frac{x^3}{3} - 2x^2 + x + 1$$

d'où

$$f'(x) = -x^2 - 4x + 1$$

qui s'annule en $x_1 = -2 - \sqrt{5}$ et $x_2 = -2 + \sqrt{5}$, et est de signe négatif au voisinage de l'infini. Par suite, f est décroissante sur $]-\infty, x_1[$ et $]x_2, +\infty[$, et croissante sur $]x_1, x_2[$.

- (b) Calculer les limites de f en $-\infty$ et $+\infty$, ainsi que la valeur de f(-2). Il vient immédiatement que $\lim_{x\to-\infty} f(x) = +\infty$, $\lim_{x\to+\infty} f(x) = -\infty$ et f(-2) = -19/3.
- (c) Déduire des questions précédentes que l'équation f(x) = 0 admet exactement 3 solutions qu'on placera par rapport aux valeurs -2, -1 et 0.

f est continue et strictement décroissante sur $]-\infty, x_1[$ avec $\lim_{x\to-\infty}f(x)=+\infty,$ puis strictement croissante sur $]x_1,x_2[$. Comme $x_1<-2< x_2,$ on en déduit que $f(x_1)<0,$ puis d'après le théorème des valeurs intermédiaires qu'il existe une unique solution z_1 à l'équation f(x)=0 sur $]-\infty,x_1[$, avec donc $z_1<-2$.

On a par ailleurs $x_1 < -1 < 0 < x_2$, donc comme f(-1) = -5/3 < 0 et f(0) = 1, en reproduisant le raisonnement précédent on montre l'existence d'une unique solution z_2 sur $]x_1, x_2[$, avec $-1 < z_2 < 0$.

Enfin, comme $f(x_2) > f(0) = 1 > 0$, il existe de même une unique solution z_3 sur $|x_2, +\infty|$, et on a donc $z_3 > 0$.

- (d) Dresser le tableau de variations de f et tracer sa courbe représentative. Ils se déduisent des questions précédentes.
- 2. On suppose désormais a quelconque.
 - (a) Pour un point (x, y) tel que $x \neq \{0, 3\}$, montrer qu'il existe une unique valeur de a telle que $f_a(x) = y$ et donner la valeur de a.

 $f_a(x) = y \text{ ssi } ax^3 - 3(a+1)x^2 + x + 1 = y \text{ ssi } a(x^3 - 3x^2) = y + 3x^2 - x - 1$. Par suite, si $x \neq \{0, 3\}$, la solution unique a vaut

$$a = \frac{y + 3x^2 - x - 1}{x^2(x - 3)}.$$

- (b) Pour y fixé, résoudre en a l'équation $f_a(3) = y$. On remarque que $f_a(3) = -23$ pour tout a. Par suite l'équation considérée n'a pas de solution si $y \neq -23$, et admet \mathbf{R} comme ensemble de solutions si y = -23.
- (c) Déduire de ce qui précède que toutes les courbes représentatives des fonctions f_a , $a \in \mathbf{R}$, passent par deux points M_1 et M_2 du plan dont on donnera les coordonnées. On remarque que $f_a(0) = 1$ pour tout a, donc toutes les courbes passent par le point M_1 de coordonnées (0,1). D'après la question précédente, elles passent également toutes par le point M_2 de coordonnées (3,-23).
- (d) Montrer que la tangente à la courbe de f_a au point d'abscisse x=0 ne dépend pas de $a\in\mathbf{R}$.

 $f'_a(0) = 1$, donc la tangente à la courbe de f_a au point d'abscisse x = 0 passe par le point de coordonnées (0,1) et admet 1 comme coefficient directeur : elle ne dépend donc pas de a.

Exercice 3

On considère la fonction de la variable réelle f définie par

$$f(x) = (x-1)e^{\frac{2}{x}} \qquad \text{pour } x \neq 0$$

1. Montrer que

$$\lim_{|x| \to \infty} x \left(e^{\frac{2}{x}} - 1 \right) = 2.$$

(on pourra utiliser le rappel donné au début de l'énoncé avant l'exercice 1) Posons y=2/x. On a alors

$$\lim_{|x| \to \infty} x \left(e^{\frac{2}{x}} - 1 \right) = \lim_{y \to 0} \frac{2}{y} (e^y - 1) = 2$$

d'après le rappel donné au début de l'énoncé.

2. Donner le domaine de définition de f, calculer les limites de f aux bornes de son domaine de définition et étudier soigneusement ses éventuelles branches infinies.

f est définie sur \mathbf{R} privé de 0.

Quand x tend vers 0 par valeurs négatives, 2/x tend vers $-\infty$ donc $e^{\frac{2}{x}}$ tend vers 0 et f(x) également.

Quand x tend vers 0 par valeurs positives, 2/x tend vers $+\infty$ donc $e^{\frac{2}{x}}$ tend vers $+\infty$ et f(x) tend vers $-\infty$: on a donc ici une asymptote verticale d'équation x=0.

Quand |x| tend vers $+\infty$, 2/x tend vers 0 donc $e^{\frac{2}{x}}$ tend vers 1. Par suite f(x) tend vers $+\infty$ si $x \to +\infty$ et f(x) tend vers $-\infty$ si $x \to -\infty$. On a donc deux branches infinies à étudier. Il est clair que f(x)/x tend vers 1 quand |x| tend vers $+\infty$. On a alors

$$f(x) - x = x\left(e^{\frac{2}{x}} - 1\right) - e^{\frac{2}{x}}.$$

D'après la première question, $x\left(e^{\frac{2}{x}}-1\right)$ tend vers 2 quand |x| tend vers $+\infty$, et on a vu également que $e^{\frac{2}{x}}$ tend vers 1. Par suite f(x)-x tend vers 1 quand |x| tend vers $+\infty$, et on a donc une unique asymptoque oblique d'équation y=x+1.

3. Calculer la dérivée et dresser le tableau de variations de f. Un calcul standard montre que la dérivée de f vaut

$$f'(x) = \frac{x^2 - 2x + 2}{x^2} e^{\frac{2}{x}} > 0.$$

f est donc croissante sur $]-\infty,0[$ et sur $]0,+\infty[$. Le tableau de variation se déduit alors des résultats précédents.

- 4. Tracer la courbe représentative de f.

 Elle se déduit également des résultats précédents, en remarquant que, par comparaison des fonctions puissances et exponentielles, la limite de f' à gauche de 0 est nulle.
- 5. A l'aide d'une intégration par parties, montrer que, si t > 1,

$$\int_{1}^{t} x e^{\frac{2}{x}} dx = \frac{t^{2} e^{\frac{2}{t}} - e^{2}}{2} + \int_{1}^{t} e^{\frac{2}{x}} dx.$$

On pose u'(x) = x et $u(x) = x^2/2$ d'une part, $v(x) = e^{\frac{2}{x}}$ et $v'(x) = -2e^{\frac{2}{x}}/x^2$ d'autre part, la formule d'intégration par parties donne

$$\int_{1}^{t} x e^{\frac{2}{x}} dx = \left[\frac{x^{2}}{2} e^{\frac{2}{x}} \right]_{1}^{t} - \int_{1}^{t} \frac{x^{2}}{2} \frac{-2}{x^{2}} e^{\frac{2}{x}} dx$$

d'où le résultat demandé.

6. En déduire l'ensemble des primitives de f.

D'après ce qui précède,

$$\int_{1}^{t} (x-1) e^{\frac{2}{x}} dx = \frac{t^{2} e^{\frac{2}{t}} - e^{2}}{2}.$$

Les primitives de f sont donc de la forme $F(t) = \frac{t^2 e^{\frac{2}{t}} - e^2}{2} + C$ où C est une constante réelle.

7. Calculer l'aire du domaine du plan constitué des points (x,y) vérifiant $1 \le x \le 2$ et $0 \le y \le f(x)$.

En reprenant les notations ci-dessus, l'aire demandée vaut $F(2) - F(1) = \frac{4e - e^2}{2} \simeq 1,74.$

Exercice 4 On considère la suite $(I_n)_{n\geq 0}$ définie par

$$I_n = \int_0^1 \frac{x^{n+1}}{1+x} dx.$$

1. Calculer I_0 et montrer que $I_1 = \ln 2 - 1/2$.

$$I_0 = \int_0^1 \frac{x}{1+x} dx = \int_0^1 \frac{x+1-1}{1+x} dx = 1 - \int_0^1 \frac{dx}{1+x} = 1 - \ln 2$$

et

$$I_1 = \int_0^1 \frac{x^2}{1+x} dx = \int_0^1 \frac{x^2-1}{1+x} dx + \int_0^1 \frac{dx}{1+x} = \int_0^1 (x-1) dx + \ln 2$$

d'où le résultat demandé.

2. Montrer que, pour tout entier $n \geq 0$,

$$0 \le I_n \le \frac{1}{n+2}.$$

 I_n est l'intégrale d'une fonction positive entre 0 et 1, donc elle est positive. L'inégalité de droite découle du fait que $x + 1 \ge 1$ pour $x \in [0, 1]$.

3. Pour x réel différent de -1 et n entier naturel non nul, montrer que

$$1 - x + x^{2} + \dots + (-1)^{n} x^{n} - \frac{1}{1+x} = \frac{(-1)^{n+2} x^{n+1}}{1+x}.$$

Le début du terme de gauche est la somme des n+1 premiers termes d'une progression géométrique de premier terme 1 et de raison -x: elle vaut donc $(1-(-1)^{n+1}x^{n+1})/1+x$. Le résultat demandé s'obtient alors immédiatement.

4. On pose

$$S_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n+1}}{n}.$$

Déduire de la question précédente que

$$I_n = (-1)^n (S_n - \ln 2).$$

En intégrant l'égalité précédente entre 0 et 1, il vient :

$$1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n+1}}{n} - \ln 2 = (-1)^{n+2} I_n.$$

Le résultat demandé s'obtient en multipliant les deux membres de cette équation par $(-1)^n$, et en remarquant que $(-1)^{2n-2} = 1$.

5. En déduire la limite de la suite $(S_n)_{n>1}$.

 I_n tend vers 0 d'après la question 2., donc S_n tend vers $\ln 2$ quand $n \to \infty$.

Exercice 5

1. On se propose de montrer par récurrence la proposition

 \mathcal{P}_n : Si n nombres réels strictement positifs a_1, a_2, \cdots, a_n vérifient $a_1 a_2 \cdots a_n = 1$, alors $a_1 + a_2 + \cdots + a_n \geq n$.

Pour ce faire, on suppose que la proposition \mathcal{P}_n est vérifiée pour un certain $n \geq 1$, et on considère n+1 nombres réels strictement positifs a_1, \dots, a_{n+1} vérifiant $a_1 a_2 \dots a_{n+1} = 1$. On supposera les a_i rangés par ordre croissant, c'est-à-dire $a_1 \leq \dots \leq a_n$.

(a) Montrer que $a_1 \leq 1$ et $a_{n+1} \geq 1$.

Si $a_1 > 1$, alors tous les termes de la suite sont plus grands que 1 (puisqu'on les a rangés par ordre croissant), et donc leur produit est strictement supérieur à 1. De même, si $a_n < 1$, tous les termes de la suite sont strictement plus petits que 1, et comme ils sont tous positifs, leur produit est lui-même strictement inférieur à 1

(b) On pose $b_1 = a_1 a_{n+1}$. Montrer que $b_1 + a_2 + a_3 + \cdots + a_n \ge n$. On a $b_1 a_2 a_3 \cdots a_n = 1$, et comme b_1, a_2, \cdots, a_n sont n nombres strictement positifs, d'après l'hypothèse \mathcal{P}_n , leur somme est supérieure ou égale à n, ce qui est le résultat demandé. (c) En déduire que $a_1 + a_2 + \cdots + a_{n+1} \ge n + 1 + (a_{n+1} - 1)(1 - a_1)$. On a donc

$$a_1 + a_2 + \dots + a_{n+1}n = b_1 + a_2 + \dots + a_n + a_{n+1} + a_1 - b_1$$

$$\geq n + a_{n+1} + a_1 - a_1a_{n+1}$$

$$= n + 1 + a_{n+1} + a_1 - a_1a_{n+1} - 1$$

$$= n + 1 + (a_{n+1} - 1)(1 - a_1)$$

ce qui est le résultat demandé.

- (d) En déduire que la proposition \mathcal{P}_{n+1} est vérifiée, puis conclure soigneusement. D'après la première question, $(a_{n+1}-1)(1-a_1) \geq 0$, et donc \mathcal{P}_{n+1} est vérifiée d'après l'inégalité que nous venons de montrer. Par ailleurs il est clair que \mathcal{P}_1 est vérifiée (si $a_1 = 1$, alors $a_1 \geq 1$) : comme nous avons montré que $\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1}$, nous avons bien prouvé par récurrence que \mathcal{P}_n est vérifiée pour tout entier $n \geq 1$.
- 2. On considère maintenant n nombres réels strictement positifs x_1, \dots, x_n . Montrer que

$$(x_1 \cdots x_n)^{\frac{1}{n}} \le \frac{x_1 + \cdots + x_n}{n}$$

(on pourra poser $a_k = \frac{x_k}{(x_1 \cdots x_n)^{\frac{1}{n}}}$ pour $1 \le k \le n$ et utiliser la question précédente).

En utilisant l'indication de l'énoncé, on s'aperçoit que le produit des a_k vaut 1, donc d'après la question précédente la somme des a_k est supérieure à n. Autrement dit,

$$\frac{x_1}{(x_1\cdots x_n)^{\frac{1}{n}}} + \cdots + \frac{x_n}{(x_1\cdots x_n)^{\frac{1}{n}}} \ge n$$

ou encore

$$\frac{x_1}{n} + \dots + \frac{x_n}{n} \ge (x_1 \cdots x_n)^{\frac{1}{n}}$$

d'où le résultat.

- 3. On considère enfin un nombre réel x > 0.
 - (a) Calculer $(1 \times x \times x^2 \cdots \times x^{2n})^{\frac{1}{2n+1}}$. En additionnant les puissances, on trouve $0+1+2+\cdots+2n=n(2n+1)$ et donc le résultat demandé est x^n
 - (b) Montrer que

$$\frac{x^n}{1+x+x^2+\dots+x^{2n}} \le \frac{1}{2n+1}$$

Le résultat provient directement de l'inégalité vue à la question précédente :

$$(1 \times x \times x^2 \cdots \times x^{2n})^{\frac{1}{2n+1}} \le \frac{1 + x + x^2 + \cdots + x^{2n}}{2n+1}$$

et du fait que $(1 \times x \times x^2 \cdots \times x^{2n})^{\frac{1}{2n+1}} = x^n$.

Exercice 6 Soit \mathcal{Q} l'ensemble des nombres complexes z = a + ib tels que a > 0 et b > 0. On définit une suite $(z_n)_{n \geq 0}$ par $z_0 \in \mathcal{Q}$ et

$$z_{n+1} = \frac{z_n + |z_n|}{2} \quad \text{pour } n \ge 0.$$

- Montrer que z_n ∈ Q pour tout entier n ≥ 0.
 On fait un raisonnement par récurrence : l'énoncé nous dit que z₀ ∈ Q, et si z_n ∈ Q, en posant z_n = a_n+ib_n avec a_n et b_n positifs, on a b_{n+1} = b_n/2 > 0 et a_{n+1} = (a_n+|z_n|)/2 > 0, d'où z_{n+1} ∈ Q et le résultat.
- 2. En déduire qu'il existe un unique réel positif ρ_n et un unique réel $\theta_n \in]0, \pi/2[$ tels que $z_n = \rho_n(\cos\theta_n + i\sin\theta_n).$

Il existe de toutes façons un unique réel positif ρ_n et un unique réel $\theta_n \in]0, 2\pi[$ tels que $z_n = \rho_n(\cos\theta_n + i\sin\theta_n)$. Comme $z_n \in \mathcal{Q}, \theta_n \in]0, \pi/2[$.

3. Montrer que pour tout entier $n \geq 0$,

$$\rho_{n+1} = \rho_n \cos \frac{\theta_n}{2}$$

et

$$\theta_{n+1} = \frac{\theta_n}{2}$$

$$+ a \cos \theta + ia \sin \theta$$

$$z_{n+1} = \frac{1}{2} \left(\rho_n + \rho_n \cos \theta_n + i \rho_n \sin \theta_n \right). \tag{1}$$

Par suite,

$$\rho_{n+1}^2 = \frac{1}{4} \left(\rho_n^2 (1 + \cos \theta_n)^2 + \rho_n^2 \sin^2 \theta_n \right)$$
$$= \rho_n^2 \left(\frac{2 + 2 \cos \theta_n}{4} \right)$$
$$= \rho_n^2 \cos^2(\theta_n/2)$$

d'après le rappel donné au début de l'énoncé. Comme $z_n \in \mathcal{Q}$, $\cos(\theta_n/2) > 0$, on a donc $\rho_{n+1} = \rho_n \cos(\theta_n/2)$.

En utilisant ce résultat et l'expression de z_{n+1} donnée en (1), on obtient

$$z_{n+1} = \frac{1}{2} (\rho_n (1 + \cos \theta_n) + i\rho_n \sin \theta_n)$$

=
$$\rho_n \cos^2(\theta_n/2) + i\rho_n \sin(\theta_n/2) \cos(\theta_n/2)$$

=
$$\rho_{n+1} (\cos(\theta_n/2) + i \sin(\theta_n/2))$$

d'où on conclut que $\theta_{n+1} = \theta_n/2$.

4. En déduire que la suite $(z_n)_{n\geq 0}$ converge vers une limite réelle $l\geq 0$. D'après la question précédente, la suite de terme général ρ_n est décroissante et minorée par 0, donc elle converge vers une limite réelle $l\geq 0$. De plus la suite de terme général θ_n converge évidemment vers 0. Par suite z_n converge vers $l(\cos 0 + i\sin 0) = l$ d'où le résultat.

Exercice 7

Soit n un entier naturel supérieur ou égal à 2. On considère une urne dans laquelle on a mis n boules bleues, 5 boules rouges et 3 boules jaunes, soit n+8 boules en tout.

- 1. On tire simultanément deux boules de l'urne, et on note p_n la probabilité que ces deux boules aient la même couleur.
 - (a) Donner la probabilité d'avoir sorti deux boules bleues, celle d'avoir sorti deux boules rouges et celle d'avoir sorti deux boules jaunes. En déduire la valeur de p_n Les boules étant tirées simultanément, il y a (n+8)(n+7)/2 paires possibles de boules tirées, dont n(n-1)/2 permettent de sortir 2 boules bleues. La probabilité d'avoir sorti deux boules bleues est donc de $\frac{n(n-1)}{(n+8)(n+7)}$. De même, la probabilité d'avoir sorti deux boules rouges est $\frac{20}{(n+8)(n+7)}$ et la probabilité d'avoir sorti deux boules jaunes est $\frac{6}{(n+8)(n+7)}$.

On en déduit que $p_n = \frac{n(n-1) + 26}{(n+8)(n+7)}$.

(b) Calculer la limite de p_n quand $n \to +\infty$. Pouvez-vous donner une explication intuitive au résultat obtenu?

La limite de p_n est celle des termes de rang principal dans la fraction ci-dessus, soit 1.

C'est intuitif car plus n est grand, plus les boules bleues sont majoritaires dans l'urne et les chances de tirer une boule d'une autre couleur dans l'urne tendent vers 0.

- 2. On effectue maintenant une série de 10 tirages successifs de deux boules comme à la question précédente, en remettant les boules dans l'urne après chaque tirage. On note X la variable aléatoire égale au nombre de fois où, lors de ces 10 tirages, on a obtenu deux boules de même couleur.
 - (a) Quelle est la loi de X?

 La loi de X est une loi binomiale de paramètres 10 et $\frac{n(n-1)}{(n+8)(n+7)}$.
 - (b) Calculer la probabilité r_n d'avoir obtenu exactement 9 fois deux boules de même couleur dans ces tirages.

Par définition de la loi binomiale,

$$r_n = 10 \times \left(\frac{n(n-1)}{(n+8)(n+7)}\right)^9 \left(1 - \frac{n(n-1)}{(n+8)(n+7)}\right).$$

(c) Calculer la limite de r_n quand $n \to +\infty$. Pouvez-vous donner une explication intuitive au résultat obtenu?

On a toujours $0 \le \left(\frac{n(n-1)}{(n+8)(n+7)}\right)^9 \le 1$, et quand $n \to +\infty$, $\left(1 - \frac{n(n-1)}{(n+8)(n+7)}\right) \to 0$. Par suite, r_n tend vers 0 quand n tend vers l'infini. Cela signifie que l'hégémonie des boules bleues est telle que la possibilité de tirer autre chose que systématiquement 2 boules bleues sur 10 tirages est asymptotiquement nulle.

AVRIL 2021

CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES CYCLE LONG / ANALYSTES STATISTICIENS

ISE cycle long / AS

CORRIGÉ de la 2ème COMPOSITION DE MATHÉMATIQUES

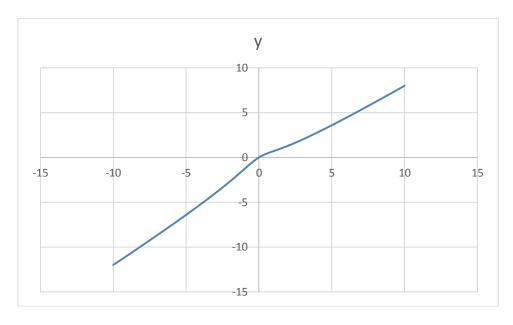
Dans toute l'épreuve, *Ln* désigne le logarithme népérien, *e* le nombre de Néper, *R* l'ensemble des nombres réels et *N* l'ensemble des entiers naturels.

Exercice n° 1

Soit l'application f définie sur R par : $f(x) = x - Ln(1 + x^2)$

1. Etudier les variations de f (on précisera son comportement aux infinis) et donner l'allure de son graphe.

La dérivée de f est égale à : $f'(x) = \frac{(x-1)^2}{1+x^2} \ge 0$. La fonction est donc strictement croissante de R sur R avec une branche parabolique dans la direction de la première bissectrice.



2. Etudier la convexité de f.

La dérivée seconde est égale à : $f''(x) = \frac{2(x-1)(x+1)}{(1+x^2)^2}$. La fonction est donc convexe pour x<-1 et x>1 et par conséquent concave entre -1 et 1.

3. Calculer $I = \int_0^1 f(x) dx$.

Soit $J = \int_{0}^{1} Ln (1 + x^{2}) dx$ que l'on intègre par parties, à savoir :

$$J = \left[x Ln(1+x^2)\right]_0^1 - \int_0^1 2\frac{x^2}{1+x^2} dx = Ln2 - 2\left[x - Arctg \ x\right]_0^1 = Ln2 - 2(1-\frac{\pi}{4}). \text{ Par conséquent :}$$

$$I = \frac{5}{2} - Ln2 - \frac{\pi}{2}$$

4. Etudier la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence : $u_{n+1} = Ln(1+u_n^2)$ et $u_0 \neq 0$.

Si la suite converge vers une limite l, cette dernière est solution de l'équation : $l = Ln(1+l^2)$ ou encore f(l) = 0, soit l=0;

Par ailleurs $\forall n > 0, u_n > 0$ et $u_{n+1} - u_n = -f(u_n) < 0$. La suite est donc décroissante et minorée, et elle converge vers 0.

Exercice n° 2

Pour n entier supérieur ou égal à 1, on définit la fonction numérique f_n par :

$$f_n(x) = \frac{e^x}{(1+x^2)^n}$$

1. Etudier les variations de f_n selon les valeurs de n (on précisera son comportement à l'infini).

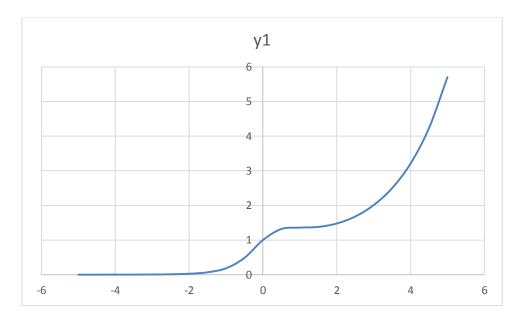
La dérivée est égale à : $f_n^{(x)} = \frac{e^x}{(1+x^2)^{n+1}} (x^2 - 2nx + 1)$

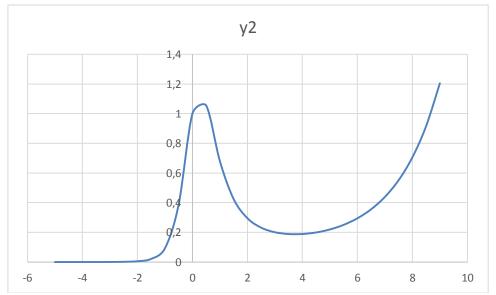
Si n=1, $f_1(x) = \frac{e^x}{(1+x^2)^2}(x-1)^2 \ge 0$ et la fonction est strictement croissante de R sur R^+ ,

avec une banche parabolique dans la direction verticale à plus l'infini et l'axe des abscisses comme asymptote à moins l'infini. Son graphe admet une tangente horizontale en 1.

Si n>1, la dérivée s'annule pour $x=n\pm\sqrt{n^2-1}$, la fonction est croissante pour $x< n-\sqrt{n^2-1}$ et $x> n+\sqrt{n^2-1}$ et décroissante entre ces deux valeurs.

2. Tracer les graphes de f_1 et f_2 .





3. Déterminer $\lim_{n\to\infty} \int_{1}^{2} f_n(x) dx$.

Sur cet intervalle, on a : $0 < f_n(x) < \frac{e^2}{2^n} \rightarrow 0$, donc la limite est nulle.

Exercice n° 3

On dispose de 12 cartes retournées sur une table (on ne voit pas la couleur de ces cartes). Ce dispositif contient 3 cartes de chaque couleur (œur, carreau, pique et trèfle).

On retourne au hasard les cartes une par une et sans remise. Le jeu s'arrête quand on a tiré 3 couleurs identiques.

- 1. Quelle est la probabilité d'obtenir 3 cartes de la même couleur au troisième tirage ?
- Aucune contrainte sur la première carte,
- La deuxième carte doit être de la même couleur que la première, soit une probabilité de 2/11
- Pour la troisième, une probabilité égale à : 1/10

Au total, la probabilité est : $\frac{2}{11} \times \frac{1}{10} = \frac{1}{55}$

- 2. Quelle est la probabilité d'obtenir 3 cartes de la même couleur au quatrième tirage ?
- Aucune contrainte sur la première carte, notons A cette première couleur et B pour les autres couleurs
- 3 possibilités pour arrêter le jeu au quatrième tirage :

AABA avec une probabilité de
$$\frac{2}{11} \times \frac{9}{10} \times \frac{1}{9} = \frac{1}{55}$$

ABBB avec une probabilité de
$$\frac{9}{11} \times \frac{2}{10} \times \frac{1}{9} = \frac{1}{55}$$

ABAA avec une probabilité de
$$\frac{9}{11} \times \frac{2}{10} \times \frac{1}{9} = \frac{1}{55}$$

Au total, la probabilité est de 3/55

- 3. Quel est le nombre maximal possible de tirages pour obtenir 3 cartes de la même couleur ? Le nombre maximal est obtenu quand on a déjà tiré deux cartes de chacune des quatre couleurs, soit donc au 9^{ème} tirage.
- 4. Quelle est la probabilité d'obtenir 3 cartes de 3 couleurs différentes au troisième tirage ?
- Aucune contrainte sur la première carte,
- La deuxième carte doit être couleur différente, soit une probabilité de 9/11
- Pour la troisième, de couleur différente aux deux premières, une probabilité égale à : 6/10

Au total, la probabilité est :
$$\frac{9}{11} \times \frac{6}{10} = \frac{27}{55}$$

5. Quelle est la probabilité d'obtenir 4 cartes de 4 couleurs différentes au quatrième tirage ?

La probabilité est :
$$\frac{9}{11} \times \frac{6}{10} \times \frac{3}{9} = \frac{9}{55}$$

Exercice n° 4

1. On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence : $u_{n+1} = \frac{3+u_n^2}{4}$ et

 $1 < u_0 \le 2$. Etudier la convergence de cette suite (on précisera sa limite si elle existe).

On vérifie aisément par récurrence que : $1 < u_n \le 2$ pour tout n.

De plus $u_{n+1} - u_n = \frac{(u_n - 1)(u_n - 3)}{4} < 0$. La suite étant décroissante et minorée, elle converge

vers une limite *l* solution de l'équation $l = \frac{3 + l^2}{4}$ et on trouve l=1.

2. Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_{n+1}=v_n+Lnu_n$ et $v_0>0$. Etudier la convergence de cette suite $(v_n)_{n\in\mathbb{N}}$.

On a $v_{n+1} - v_n = Lnu_n \ge 0$, car $1 < u_n$. La suite est donc croissante. Si elle était majorée, par exemple : $v_n \le M$, alors $v_{n+1} \le M + Lnu_n$ et ce majorant est plus grand que M. La suite n'est donc pas majorée et elle tend vers plus l'infini.

3. On considère la suite réelle $(w_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence : $w_{n+1} = \frac{9+w_n^2}{6}$ et $w_0 = 0$. Etudier la convergence de cette suite (on précisera sa limite si elle existe). La suite est à termes positifs et si elle converge vers une limite l alors cette limite vérifie : $l = \frac{9+l^2}{6}$, à savoir l=3. On vérifie par récurrence que $w_n < 3$ et que $w_{n+1} - w_n = \frac{(3-w_n)^2}{6} \ge 0$. La suite étant croissante et majorée, elle converge vers l=3.

Exercice n° 5

Soit la fonction f_{α} définie sur l'ensemble des nombres réels non nuls par : $f_{\alpha}(x) = x^{\alpha} \sin\left(\frac{1}{x}\right)$ où α est un paramètre réel strictement positif.

1. Montrer que f_{α} est prolongeable par continuité en zéro. On notera encore f_{α} la fonction ainsi prolongée en zéro.

On a : $\left|x^{\alpha} \sin\left(\frac{1}{x}\right)\right| \le \left|x^{\alpha}\right| \to 0$ quand x tend vers zéro. Par conséquent, on peut prolonger par continuité en posant $f_{\alpha}(0) = 0$.

2. Etudier la dérivabilité de f_{α} sur R.

La fonction est indéfiniment dérivable (comme composée de fonctions élémentaires indéfiniment dérivables) sur R^* . Les difficultés se posent uniquement à l'origine (idem pour les deux questions suivantes).

Rappelons que les fonctions $\sin\left(\frac{1}{x}\right)$ et $\cos\left(\frac{1}{x}\right)$ n'ont pas de limite en zéro.

On a : $\lim_{x \to 0} \frac{f_{\alpha}(x) - f_{\alpha}(0)}{x} = \lim_{x \to 0} x^{\alpha - 1} \sin(\frac{1}{x}) = 0$ si $\alpha > 1$. La fonction est donc dérivable en zéro avec une dérivée nulle si $\alpha > 1$, sinon elle n'est pas dérivable.

3. Etudier la continuité de la fonction dérivée de f_{α} sur R (quand elle existe). Il faut $\alpha > 1$.

En dehors de zéro, la dérivée est : $f_{\alpha}(x) = \alpha x^{\alpha-1} \sin(\frac{1}{x}) - x^{\alpha-2} \cos(\frac{1}{x})$.

Cette dérivée tend vers zéro pour $\alpha > 2$ et elle est donc continue en zéro. Sinon la fonction dérivée n'est pas continue.

4. La fonction f_{α} est-elle deux fois continument dérivable en zéro ? Cherchons d'abord la dérivée seconde en zéro :

$$\lim_{x \to 0} \frac{f_{\alpha}(x) - f_{\alpha}(0)}{x} = \lim_{x \to 0} \alpha x^{\alpha - 2} \sin(\frac{1}{x}) - x^{\alpha - 3} \cos(\frac{1}{x}) = 0 = f_{\alpha}(0) \sin \alpha > 3$$

Puis pour $x \neq 0$,

$$f_{\alpha}^{"}(x) = \alpha (\alpha - 1) x^{\alpha - 2} \sin(\frac{1}{x}) - \alpha x^{\alpha - 3} \cos(\frac{1}{x}) - (\alpha - 2) x^{\alpha - 3} \cos(\frac{1}{x}) + x^{\alpha - 4} \sin(\frac{1}{x})$$

On a : $\lim_{n \to \infty} f_{\alpha}^{(n)}(x) = 0 = f_{\alpha}^{(n)}(0) \text{ si } \alpha > 4$.

En conclusion la fonction est de deux fois continument dérivables ssi $\alpha > 4$

5. Résoudre l'équation $f_{\alpha}(x) = 0$. On obtient x = 0 ou $x = \frac{1}{k \pi}$.

Exercice n° 6

Soit la fonction f définie sur R par : f(0) = 0 et $\forall x \neq 0, f(x) = \frac{e^{(x^2)} - 1}{x}$

- 1. Montrer que f admet une application réciproque, notée f^{-1} , définie sur R. On va montrer que f est continue et strictement croissante, donc bijective et elle admet alors une application réciproque. On rappelle que $e^u \approx 1 + u + \frac{u^2}{2}$ au voisinage de 0.
- La fonction est continue $\forall x \neq 0$ et en zéro : $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2}{x} = 0 = f(0)$
- Dérivabilité de f en zéro :

 $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{e^{(x^2)} - 1}{x^2} = 1 = f'(0)$ et la fonction dérivée est aussi continue.

- Monotonie de f:

On a:
$$f'(x) = \frac{(2x^2 - 1)e^{(x^2)} + 1}{x^2}$$
 ou encore $x^2 f'(x)e^{-x^2} = (2x^2 - 1) + e^{-(x^2)}$

En remplaçant x^2 par u, soit $g(u) = (2u - 1) + e^{-u}$ pour $u \ge 0$. Le signe de la dérivée de f est le même que celui de g. On a : $g'(u) = 2 - e^{-u} > 0$, la fonction g est donc croissante et comme g(0) = 0, on a : $\forall u \ge 0$, $g(u) \ge 0$

La fonction f est donc strictement croissante et bijective.

2. Donner un développement limité de f^{-1} , à l'ordre 5, au voisinage de zéro. Le développement limité de f au voisinage de 0 est :

$$f(x) = x + \frac{x^3}{2} + \frac{x^5}{6} + o(x^5)$$

 f^{-1} étant impaire (comme f), son développement limité sera de la forme :

$$f^{-1}(x) = a_1 x + a_3 x^3 + a_5 x^5 + o(x^5)$$

On doit avoir:

$$x = f^{-1}o f(x) = a_1 \left(x + \frac{x^3}{2} + \frac{x^5}{6}\right) + a_3 \left(x + \frac{x^3}{2}\right)^3 + a_5 x^5 + o(x^5)$$

 $x = a_1 x + (\frac{a_1}{2} + a_3) x^3 + (\frac{a_1}{6} + \frac{3a_3}{2} + a_5) x^5 + o(x^5)$ et par identification, on obtient :

$$a_1 = 1; a_3 = -\frac{1}{2}; a_5 = \frac{3}{4} - \frac{1}{6} = \frac{7}{12}$$
. Par conséquent :

$$f^{-1}(x) = x - \frac{x^3}{2} + \frac{7}{12}x^5 + o(x^5)$$