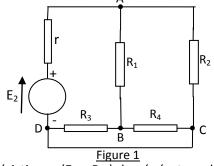

EAMAC – 2014 - SUJET P-C-5

Exercice 1

- I. Une sphère conductrice creuse (S_1) de centre O et de rayon R_1 porte une charge Q.
 - 1) Déterminer le vecteur-champ électrique en tout point M de l'espace situé à la distance r du point O.
 - 2) Déterminer le potentiel électrique en tout point de l'espace.
- II. On place concentriquement à la sphère (S_1) portant la charge Q, une autre sphère creuse conductrice (S_2) de rayon R_2 portant une charge Q_0 .
 - 1) Donner et justifier la répartition des charges sur ces conducteurs.
 - 2) Déterminer les vecteurs-champ électriques, en tout point M de l'espace tel que OM = r.
 - 3) Déterminer les potentiels, en tout point M de l'espace tel que OM = r. En déduire les potentiels électriques V_1 de (S_1) et V_2 de (S_2) .
 - 4) Déterminer la capacité C du condensateur ainsi formé.
 - 5) On relie (S_2) au sol, déterminer la nouvelle valeur V_1 du potentiel de (S_1) .



Exercice 2

On considère le réseau électrique comprenant :

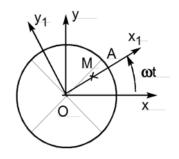
un générateur de force électromotrice E = 12 V et de résistance interne r = 1 Ω et des résistances, connectés selon le montage de la figure 1. Les puissances consommées dans les résistances R_1 , R_2 , R_3 , R_4 sont respectivement : P_1 = 6 W ; P_2 = 10 W ; P_3 = 1,5 W ; P_4 = 2,5 W. La différence de potentiel aux bornes des points A et D est : U_{AD} = 10 V.

- 1) Déterminer la puissance disponible aux bornes du générateur (E , r).
- 2) Calculer les intensités et les sens des courants dans les différentes branches du réseau.

3) On enlève la résistance R₃ du circuit. Déterminer les éléments caractéristiques (E_{Th} , R_{Th}) du générateur de tension de Thévenin correspondant au dipôle BD du réseau électrique restant. En déduire le schéma du modèle équivalent de Thévenin du dipôle BD , ainsi que l'intensité du courant passant par R₃ dans le réseau électrique initial.

Docs à portée de main

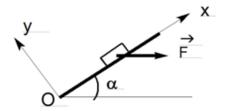
Exercice 3


Dans un plan xOy d'un repère fixe orthonormé direct R (O ; , ,), un disque de rayon r et de centre O tourne autour de l'axe Oz à une vitesse angulaire constante ω .

Soit R_1 (O; , ,) un repère orthonormé direct lié au disque.

Un point M part à l'instant t = 0 du point O pour aller vers le point A à une vitesse linéaire constante V.

En exprimant les résultats sur R₁, déterminer pour le point M


- 1°/ la loi horaire x₁(t) sur Ox₁
- 2°/ les vecteurs vitesses relative , d'entraînement et absolue
- 3°/ les vecteurs accélérations relative et de Coriolis

Exercice 4:

Un corps matériel de poids P est placé sur un plan incliné d'un angle α par rapport à l'horizontale. Soit f le coefficient de frottement de glissement. Dans le cas où (cos α - f sin α) est positif, on demande :

- 1°/ d'énumérer les forces appliquées au corps Matériel
- 2°/ de déterminer la force horizontale F permettant de maintenir en équilibre ce corps matériel.

2