CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie B Option Économie

CORRIGÉ DE L'ÉPREUVE DE MATHÉMATIQUES

Exercice 1

- 1) a. Les solutions de l'équation différentielle sont les fonctions g définies sur R par : $g(t) = Ce^{\frac{t}{4}}$ où $C \in R$
- 1) b. g(0) = 1 implique que C = 1 donc pour tout réel t, on a $g(t) = e^{\frac{t}{4}}$
- 1) c. L'unité choisie étant la centaine d'individus, la population dépasse 300 rongeurs si et seulement si g(t) > 3 soit $e^{\frac{t}{4}} > 3$ ou encore $\frac{t}{4} > \ln 3$ soit $t > 4 \ln 3 \approx 4,3$. Au bout de 5 ans la population dépassera 300 rongeurs.
- 2) a. La fonction u est définie sur R^+ et strictement positive, la fonction h définie sur R^+ par $h(t) = \frac{1}{u(t)}$, est définie sur R^+ et strictement positive.

La fonction h est dérivable comme inverse d'une fonction dérivable strictement positive donc non nulle sur R^+ et pour tout réel positif t on a $u(t) = \frac{1}{h(t)}$ soit pour tout réel positif t,

 $u'(t) = -\frac{h'(t)}{h^2(t)}$ donc la relation devient pour tout réel positif t:

$$-\frac{h'(t)}{h^2(t)} = \frac{1}{4h(t)} - \frac{1}{12h^2(t)}$$
 soit:

$$h'(t) = -\frac{1}{4}h(t) + \frac{1}{12}$$
 et $h(0) = \frac{1}{u(0)} = 1$

2) b. Les solutions sur R de l'équation différentielle $y' = -\frac{1}{4}y + \frac{1}{12}$ sont les fonctions définies sur R, $t \mapsto \frac{1}{3} + Ce^{-\frac{t}{4}}$ où C \in R.

Comme
$$h(0) = \frac{1}{3} + Ce^0 = 1$$
 on a $C = \frac{2}{3}$.

Pour tout réel positif t,
$$h(t) = \frac{1}{3} + \frac{2}{3}e^{-\frac{t}{4}}$$
 et $u(t) = \frac{3}{1 + 2e^{-\frac{t}{4}}}$

2) c. $\lim_{t\to +\infty} u(t) = 3$ donc la taille de la population qui sera en augmentation constante tendra vers 300 individus.

Exercice 2

1) a.

- Le nombre de tirages possibles est $C_2^5 = 10$.
- L'évènement V est réalisé lorsque les deux boules vertes de l'urne sont tirées, il y a donc $C_2^2 = 1$ seul tirage réalisant V. Les tirages étant tous équiprobables on a :

p(V) = nombre de tirages réalisant V / nombre total de tirages possibles = $\frac{1}{10}$.

• L'évènement J est réalisé lorsque deux boules jaunes sont tirées, sachant qu'il y a dans l'urne trois boules jaunes, il y a $C_2^3 = 3$ tirages réalisant J. Les tirages étant équiprobables, on a :

p(J) = nombre de tirages réalisant J / nombre total de tirages possibles = $\frac{3}{10}$.

1) b. Lorsque le joueur a obtenu deux boules vertes, il fait tourner la roue. La fraction de la roue pour laquelle l'évènement R est réalisé est égale à :1 $-\frac{1}{8} - \frac{1}{4} = \frac{5}{8}$. Donc $p_V(R) = \frac{5}{8}$.

On obtient alors : $p(R \cap V) = p(V) * p_V(R) = \frac{1}{10} * \frac{5}{8} = \frac{1}{2 * 8}$. Donc $p(R \cap V) = \frac{1}{16}$.

1) c. Les évènements V, J, D formant un système complet d'évènements où D est l'évènement « le joueur a obtenu deux boules de couleurs différentes », on utilise la formule des probabilités totales pour calculer p(R):

$$p(R) = p(V) * p_V(R) + p(J) * p_J(R) + p(D) * p_D(R)$$
.

D'après le texte $p_{J}(R) = 1$ puisque si le joueur obtient deux boules jaunes, il est remboursé de sa participation, et $p_D(R) = 0$ car si le joueur obtient deux boules de couleurs différentes il a perdu. On obtient donc :

$$p(R) = \frac{1}{10} * \frac{5}{8} + \frac{3}{10} * 1 = \frac{5}{80} + \frac{3*8}{80} = \frac{29}{80}$$

1) d. La probabilité de l'évènement C : « le joueur gagne 100 E » est :

 $p(C) = p(V \cap A) = p(V) * p_V(A) = \frac{1}{10} * \frac{1}{8}$, A étant l'évènement « la roue indique un gain de 100 E »

$$p(C) = \frac{1}{80}$$

La probabilité de l'évènement T "le joueur gagne 20 euros" est :

 $p(T) = p(V \cap B) = p(V) * p_V(B) = \frac{1}{10} * \frac{1}{4}$, B étant l'évènement « la roue indique un gain de 20 E »

$$p(T) = \frac{1}{40}$$

- 2) a. Les valeurs prises par X sont :
 - m lorsque le joueur a perdu lors du tirage des deux boules, évènement D;
 - 0 lorsque l'évènement R est réalisé;
 - 20 m lorsque l'évènement T est réalisé;
 - 100 m lorsque l'évènement C est réalisé.
- b. La loi de probabilité de X est d'après ce qui précède :

$$p(X = -m) = p(D) = \frac{3}{5}$$

$$p(X=0) = p(R) = \frac{29}{80}$$

$$p(X = 20 - m) = p(T) = \frac{1}{40}$$

$$p(X = 100 - m) = p(C) = \frac{1}{80}$$

2) c. Le calcul de l'espérance mathématique E(X) de la variable aléatoire X

$$E(X) = \frac{3}{5}(-m) + \frac{29}{80} * 0 + \frac{1}{40}(20 - m) + \frac{1}{80}(100 - m)$$
$$E(X) = \frac{140 - 51m}{80}$$

2) d.
$$E(X) \le 0$$

D'où
$$m \ge \frac{140}{51} \approx 2,74$$

La mise minimale en nombre entier d'euros sera de 3 euros.

3) On désigne par F l'évènement « le joueur perd au moins une fois sa mise » et par \overline{F} l'évènement contraire soit : « le joueur ne perd jamais sa mise ».

$$p(\overline{F}) = p(D) * p(D) * p(D) * p(D) = \frac{2}{5} * \frac{2}{5} * \frac{2}{5} * \frac{2}{5}$$

La probabilité que le joueur perde au moins une fois sa mise au cours des 4 parties est $p(F) = 1 - \left(\frac{2}{5}\right)^4 = 0,9744$

4) Calculons la probabilité de l'évènement D: obtenir deux boules de couleurs différentes. Les tirages de deux boules sont tous équiprobables, le nombre total de tirages possibles est C_2^{n+2} et le nombre de tirages réalisant D est 2n. D'où:

$$p(D) = \frac{2n}{C_2^{n+2}} = \frac{4n}{(n+2)(n+1)}$$

Si D est réalisé le joueur perd sa mise, si \overline{D} est réalisé le joueur gagne ou est remboursé de sa mise :

$$p(G) = p(\overline{D}) = 1 - \frac{4n}{(n+2)(n+1)}$$

On veut avoir : $p(G) \ge \frac{1}{2}$ donc $n^2 - 5n + 2 \ge 0$.

Le trinôme $x^2 - 5x + 2$ a pour racines $x_1 = \frac{5 + \sqrt{17}}{2}$ et $x_2 = \frac{5 - \sqrt{17}}{2}$.

Les entiers naturels de N* solutions sont les entiers supérieurs ou égaux à $\frac{5+\sqrt{17}}{2}$ soit les entiers supérieurs ou égaux à 5.

La valeur minimale de n pour que p(G) soit supérieure à 0,5 est n = 5

Exercice 3

1) Pour tout réel t de l'intervalle [0;1], on a : $0 \le 1 - t \le 1$

On en déduit que pour tout entier n, $(1-t)^n \ge 0$ et puisqu'une exponentielle est toujours positive, pour tout entier n et tout réel t appartenant à [0;1], on a $(1-t)^n e^t \ge 0$

 $f_n(t) = (1-t)^n e^t$ est continue et positive sur [0;1], on a $\int_0^1 f_n(t) dt \ge 0$

Pour tout entier *n* non nul $u_n \ge 0$

2) a. La fonction exponentielle est croissante sur R donc sur [0;1], donc pour tout t appartenant à [0;1], on a : $e^0 \le e^t \le e^1$ soit $1 \le e^t \le e$

En multipliant les deux membres de l'inégalité $e^t \le e$ par le réel positif $(1-t)^n$, on en déduit : $(1-t)^n e^t \le (1-t)^n e$

En intégrant sur [0;1] les deux membres de l'inégalité précédente, on a :

$$\int_{0}^{1} (1-t)^{n} e^{t} dt \leq \int_{0}^{1} e^{t} (1-t)^{n} dt$$

Or,
$$e \int_0^1 (1-t)^n dt = e \frac{1}{n+1}$$

d'où le résultat demandé.

2) b. On sait que pour tout entier *n* non nul $0 \le u_n \le \frac{e}{n+1}$

Or,
$$\lim_{n\to\infty} \frac{e}{n+1} = 0$$
 donc, par encadrement on a : $\lim_{n\to\infty} u_n = 0$

3) $u_1 = e - 2$ en intégrant par parties.

En posant $u(t) = (1 - t)^{n+1}$ et $v'(t) = e^{t}$ et en utilisant l'intégration par parties, on trouve le résultat demandé.

- 4) On considère la propriété $P_n \ll v_n = u_n + (n!)(a+2-e)$ » que l'on démontre par récurrence. D'où le résultat demandé.
- 5) La limite dépend du signe de a + 2 e
 - Si a = e 2, la limite est nulle
 - Si a > e 2, la limite est égale à + ∞
 - Si a < e 2, la limite est égale à ∞

Exercice 4

1)
$$P(\lambda) = -\lambda^3 - a \lambda^2 - b \lambda - c$$

2)

- a. Si $P(\lambda)$ admet 3 racines distinctes 2 à 2, la matrice est diagonalisable (cf. cours)
- b. Soit λ_1 la racine double et λ_2 la racine simple. Pour que la matrice soit diagonalisable, il faut que l'espace propre associé à la valeur propre λ_1 soit de dimension 2, ce qui signifie que le rang de la matrice $A = M \lambda_1 I_d$ soit 1. Cela signifie que tous les déterminants d'ordre 2 sont nuls or il apparaît que le déterminant en haut à gauche de A n'est pas nul et vaut 1

$$\begin{vmatrix}
-\lambda_1 & 1 & 0 \\
0 & -\lambda_1 & 1 \\
-c & -b & -a - \lambda_1
\end{vmatrix}$$

donc la dimension de l'espace propre à la valeur propre λ_1 est de dimension 1 donc M est non diagonalisable.

- c. Soit λ_1 la racine triple du polynôme caractéristique. Pour la même raison que précédemment, l'espace propre associé à la valeur propre λ_1 ne peut être 3 donc M est non diagonalisable.
- 3) On commence par chercher les vecteurs propres associés à λ_1 et à λ_2 (u et v respectivement) qui se calculent via $f(u) = \lambda_1$ u et $f(v) = \lambda_2$ v (f étant l'endormorphisme associé à la matrice M)

Donc
$$u = \begin{pmatrix} 1 \\ \lambda_1 \\ \lambda_1^2 \end{pmatrix}$$
 et $v = \begin{pmatrix} 1 \\ \lambda_2 \\ \lambda_2^2 \end{pmatrix}$

4) On cherche une base (u, w, v) dans laquelle la matrice M s'ecrive sous le forme demandée. Dans cette base, le troisième vecteur w est donc tel que $f(w) = u + \lambda_1 w$.

On trouve alors
$$w = \begin{pmatrix} 0 \\ 1 \\ 2\lambda_1 \end{pmatrix}$$

- On vérifie aisément que (u, w, v) est bien une base.
- 5) On sait que u et w sont dans la base que l'on cherche et on veut trouver un troisième vecteur w' tel que, dans cette base (u, w, w'): $f(w) = v + \lambda_1$ w' (puisque f est

l'endormorphisme associé à M). On trouve alors w'=
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

On vérifie aisément que (u, w, w') est bien une base.