AVRIL 2014

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie B Option Économie

CORRIGÉ DE L'ÉPREUVE DE MATHÉMATIQUES

Exercice 1

Partie A

1. Les fonctions f et g sont dérivables sur $[0;+\infty[$ et pour $x \ge 0$:

$$f'(x) = \frac{-x}{1+x} \le 0$$
 et $g'(x) = \frac{x^2}{1+x} \ge 0$

Les limites en $+\infty$ sont $-\infty$ pour la fonction f et $+\infty$ pour la fonction g

Remarque: les tableaux de variations ne sont pas faits.

2 . Comme f(0) = g(0) = 0, on en déduit que f est négative sur $[0;+\infty[$ et que g est positive sur $[0;+\infty[$.

On a done pour tout $x \ge 0$,

$$\ln (1+x) - x \le 0$$

$$\ln (1+x) - x + \frac{x^2}{2} \ge 0$$

Ce qui donne :

$$x - \frac{x^2}{2} \le \ln(1+x) \le x$$

Partie B

1. $u_n > 0$ pour $n \ge 1$

On raisonne par récurrence sur n.

On a $u_1 = \frac{3}{2} > 0$ et la propriété est vérifiée pour n = 1.

Si $u_n > 0$ alors $u_{n+1} = u_n \left(1 + \frac{1}{2^{n+1}} \right) > 0$, donc d'après le principe de récurrence :

1

$$u_n > 0$$
 pour tout $n \in \mathbb{N}^*$

2 . pour tout $n \ge 1$:

$$\ln u_n = \ln \left(1 + \frac{1}{2}\right) + \ln \left(1 + \frac{1}{2^2}\right) + \dots + \ln \left(1 + \frac{1}{2^n}\right) = \sum_{k=1}^n \ln \left(1 + \frac{1}{2^k}\right)$$

On raisonne par récurrence sur n.

. Pour n = 1, $u_1 = \frac{3}{2}$ et $\ln u_1 = \ln \left(1 + \frac{1}{2^1}\right)$ et la propriété est vérifiée au rang 1.

. Supposons que, pour un certain entier n, $\ln u_n = \sum_{k=1}^n \ln \left(1 + \frac{1}{2^k} \right)$

On a alors par définition:

$$\ln u_{n+1} = \ln \left(u_n \left(1 + \frac{1}{2^{n+1}} \right) \right) = \ln u_n + \ln \left(1 + \frac{1}{2^{n+1}} \right)$$

$$= \sum_{k=1}^{n} \ln\left(1 + \frac{1}{2^{k}}\right) + \ln\left(1 + \frac{1}{2^{n+1}}\right) = \sum_{k=1}^{n+1} \ln\left(1 + \frac{1}{2^{k}}\right)$$

Et la propriété est vérifiée au rang n + 1.

3 . Il résulte de la partie A, question 2 que pour tout $\ k \in N^*$

$$\frac{1}{2^k} - \frac{1}{2} x \left(\frac{1}{2^k}\right)^2 \le \ln\left(1 + \frac{1}{2^k}\right) \le \frac{1}{2^k}$$

Soit:

$$S_n - \frac{1}{2}T_n \le \ln u_n \le S_n$$

4 . Les sommes S_n et T_n sont des sommes de termes de suite géométrique.

2

$$S_n = 1 - \frac{1}{2^n}$$
 et $T_n = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$

On en déduit que :
$$\lim_{n \to +\infty} S_n = 1 \text{ et } \lim_{n \to \infty} T_n = \frac{1}{3}$$

5 . a . Variations de u_n

On a pour tout $n \ge 1$, u_n strictement positif:

$$\frac{u_{n+1}}{u_n} = 1 + \frac{1}{2^{n+1}} > 1 \text{ donc } u_{n+1} > u_n$$

La suite (u_n) est donc strictement croissante

b. Etude de la convergence de (u_n)

On a de plus pour $n \ge 1$: $\ln u_n \le S_n \le 1$

Donc: $u_n \le e$

La suite (u_n) est croissante et majorée donc elle converge.

c. Comme la suite (u_n) est croissante et à termes strictement positifs, on a $\ell > 0$. La fonction ln est continue en ℓ donc $\lim_{n \to \infty} \ln u_n = \ln \ell$

De l'encadrement :
$$S_n - \frac{1}{2}T_n \le \ln u_n \le S_n$$

On déduit : $\lim_{n \to +\infty} \left(S_n - \frac{1}{2} T_n \right) \le \lim_{n \to +\infty} \ln u_n \le \lim_{n \to +\infty} S_n$

Soit:
$$1 - \frac{1}{6} \le \ln \ell \le 1$$
 $e^{\frac{5}{6}} \le \ell \le e$

Exercice 2

1.
$$p(\overline{D_1}) = 0.4$$
 et donc $p(D_1) = 1 - 0.4 = 0.6$
 $p(R_1/D_1) = 0.3$

Comme
$$R_1 \subset D_1$$
 on a: $p(R_1) = p(R_1 \cap D_1) = p(D_1)p(R_1 / D_1)$
 $p(R_1) = 0.6 \times 0.3 = 0.18$

2. $p(\overline{D_2}/\overline{D_1}) = 0.3$ car pour que la personne ne décroche pas la seconde fois, il faut qu'elle n'ait pas décroché la première fois et ait été rappelée, et $p(R_2/D_2) = 0.2$

3

On en déduit
$$p(D_2/\overline{D_1}) = 1 - 0.3 = 0.7$$
 et comme $D_2 \subset \overline{D_1}$, $p(D_2) = p(D_2 \cap \overline{D_1}) = p(\overline{D_1}) \times p(D_2/\overline{D_1}) = 0.4 \times 0.7 = 0.28$ Comme $R_2 \subset D_2$ on en déduit : $p(R_2) = p(R_2 \cap D_2) = p(D_2) p(R_2/D_2) = 0.056$

Enfin puisque R est la réunion disjointe de R_1 et R_2 , on obtient : $p(R) = p(R_1) + p(R_2) = 0.236$

3.
$$P_R(R_1) = \frac{p(R \cap R_1)}{p(R)} = \frac{p(R_1)}{p(R)} = \frac{0.18}{0.236}$$

4. On a un schéma de Bernoulli dans lequel la probabilité de succès est p = p(R) = 0.236. Le nombre de personnes qui répondent au questionnaire est une variable aléatoire suivant une loi binomiale de paramètre (25; p). On cherche:

$$p(X = 5) = {25 \choose 5} (0.236)^5 (1 - 0.236)^{20}$$
 Formesout a composite de main

On obtient:

$$p(X = 5) = 0.179 \text{ à } 10^{-3} \text{ près}$$

Exercice 3

On écrit :
$$\frac{1}{1+bx^2} = 1 - bx^2 + b^2x^4 - b^3x^6 + o(x^6)$$
 et $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^6)$

Ce qui donne par produit
$$\frac{1+ax^2}{1+bx^2} = 1(a-b)x^2 + (b^2 - ab)x^4 + (-b^3 + ab^2)x^6 + o(x^6)$$

Finalement, le développement limité de la fonction est donné par :

$$\cos x - \frac{1 + ax^2}{1 + bx^2} = \left(-a + b - \frac{1}{2}\right)x^2 + \left(-b^2 + ab + \frac{1}{24}\right)x^4 + \left(+b^3 - ab^2 - \frac{1}{120}\right)x^6$$

Le terme d'ordre 2 disparaît si b - a = 1/2, et celui d'ordre 4 disparaît aussi si :

$$-b(b-a) = -\frac{1}{24} \iff b = 1/12$$

Dans ce cas, on trouve a = -5/12 et pour ces valeurs de a et b, on trouve une partie principale de degré 6 :

$$\cos x - \frac{1 + ax^2}{1 + bx^2} = \frac{1}{480}x^6$$

Exercice 4

Supposons qu'il existe n scalaires $\lambda_1, ..., \lambda_n$ tels que $\lambda_1 w_1 + ... + \lambda_n w_n = 0$

Ceci se réécrit en :
$$\sum_{k=1}^{n-1} \lambda_k (v_k + v_{k+1}) + \lambda_n (v_n + v_1) = 0$$

Soit encore:
$$(\lambda_1 + \lambda_n)v_1 + \sum_{k=2}^n (\lambda_{k-1} + \lambda_k)v_k$$

Puisque le système $(v_1,...,v_n)$ est linéairement indépendant, on en déduit le système :

$$\begin{cases} \lambda_n = -\lambda_1 \\ \lambda_k = -\lambda_{k-1} \text{ pour } 2 \le k \le n \end{cases}$$

La deuxième égalité donne facilement par récurrence, pour $2 \le k \le n$, $\lambda_k = (-1)^{k-1} \lambda_1$.

En particulier on a $\lambda_n = (-1)^{n-1} \lambda_1$.

On discute maintenant suivant la parité de n:

- 1. Si *n* est impair on a à la fois $\lambda_n = \lambda_1$ et $\lambda_n = -\lambda_1$. Ceci impose $\lambda_1 = 0$ et par suite $\lambda_k = 0$ pour tout *k*. Le système est libre.
- 2. Si n est pair, la dernière équation est $\lambda_n = -\lambda_1$, qui est la même que la première. Elle se simplifie donc. Pour $\lambda_k = (-1)^k$, on a alors $\lambda_1 w_1 + ... + \lambda_n w_n = 0$. Le système est lié.

Exercice 5

1 . Le terme de plus haut de degré P_n est obtenu en dérivant n fois X^{2n} . Il vaut donc $\frac{2n!}{n!}X^n$.

2 .

- a. Le terme de plus haut de degré Q_p est obtenu en dérivant p fois X^{2n} . Il est de degré 2n-p. Il a donc au plus 2n-p racines.
- b. Prouvons comme Q_p est continue par récurrence finie sur p dans $\{1,...n\}$ que Q_p admet exactement p racines distinctes dans]-1,1[. Pour p=1 on sait que $Q_0(-1)=Q_0(1)=0$, et le théorème de Rolle donne l'existence d'une racine dans]-1,1[.

5

Supposons le résultat prouvé au rang p, et prouvons-le au rang p+1 avec $p+1 \le n$. On note $-1 < \alpha_1 < ... < \alpha_p < 1$ les p racines de Q_p dont l'existence est donnée dans]-1,1[. Remarquons en outre que puisque 1 et -1 sont racines d'ordre n de Q_0 , et que $p \le n-1$, ces deux nombres sont encore racines de Q_p . Il suffit alors d'appliquer le théorème de Rolle p+1 fois : une fois entre -1 et $\alpha_1, p-1$ fois entre α_k et α_{k+1} et une fois entre α_p et 1.

3 . On a donc prouvé que $P_n = Q_n$ a au moins n racines distinctes dans -1,1. Comme il est de degré n, il a au plus n racines et donc P_n s'annule exactement en n points deux à deux distincts de -1,1.