Série :Barycentre et Produit scalaire

Exercice 1:

On donne un triange ABC. On désigne par : E le barycentre de (B,3) et (C,5) ;F le barycentre (C,5) et (A,2) .

G le point de concours (AE) et (BF) H le point de concours (CG) et (AB).

Démontrer que G est milieu de [HC]

Exercice 2:

Soit \overline{ABC} un triangle isocèle de sommet A. I est le milieu de [BC], H le projeté orthogonal de I sur (AC) et J le milieu de [IH]. Démontrer que les droites (AJ) et (BH) sont perpendiculaires :

- a) En s'appuyant sur le produit scalaire.
- b) En introduisant le milieu K de [HC] et en démontrant que J est l'orthocentre du triangle AIK.

Exercice 3:

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

1) Calculer la distance du point A à la droite (D) dans les cas suivants.

a) (D):
$$y = -3x + 4$$
 et $A(3,-1)$ b) (D): $\begin{cases} x = -2 + 3t \\ y = 1 - 4t \end{cases}$ et $A\begin{pmatrix} 1 \\ 3 \end{pmatrix}$

- 2) m étant un paramètre réel et soit (D_m) : mx (2m+1)y + m 3 = 0
 - a) Calculer la distance d(m) du point A(1,1) à (D_m) .
 - b) Déterminer (D_m) sachant que d(m)=1.

Exercice 4:

Dans le plan muni d'un repère orthonormé (O, i, j). A(-2,-1), B(-4,3) et C(-3,6)

Donner une équation cartésienne du cercle circonscrit au triangle ABC en précisant son centre et son rayon.

Exercice 5:

Soit (O, I, J) un repère orthonormé, On considère A(2,-1), B(3,-2) et C(0, 1).

- 1. Démontrer analytiquement que l'ensemble ζ des points M(x, y) tels que $\frac{MA}{MB}$ = 2 est un cercle. Précises son centre et son rayon.
- 2. Déterminer analytiquement les ensembles des points suivants :

a)
$$C_1 = \{ M(x,y) / MA^2 + 2MB^2 + MC^2 = 13 \}$$
 b) $C_2 = \{ M(x,y) / MA^2 - 2MB^2 + MC^2 = 13 \}$

d)
$$C_3 = \{ M(x,y) / \overrightarrow{MA.MB} = \overrightarrow{CA}.\overrightarrow{CB} \}$$
 e) $C_4 = \{ M(x,y) / \overrightarrow{AM}.\overrightarrow{AB} = -1 \}$

Exercice 6:

A et B sont deux points tels que AB=3cm.

Déterminer l'ensemble des points M du plan dans les cas suivants :

a)
$$2MA^2 - MB^2 = 3$$
 b) $\overrightarrow{AB} \cdot (2\overrightarrow{MA} + \overrightarrow{MB}) = -3$ c) $(2\overrightarrow{MA} + \overrightarrow{MB})(\overrightarrow{MA} - 3\overrightarrow{MB}) = 0$ d) $\frac{MA}{MB} = 2$

Exercice 7:

ABC, un triangle tel que BC= 4cm, $\hat{B} = \frac{\pi}{6}$ et $\hat{C} = \frac{3\pi}{4}$.

Soit f l'application du plan dans IR définie par : $f(M) = MB^2 - 3MC^2$

- 1) Calculer AB et AC
- 2) Calculer f(A), f(B) et f(C)
- 3) Déterminer k pour la ligne de niveau k de f passe par : a) le milieu I de BC b) le point A

ACADEMIE DE RUFISQUE LYCEE MODERNE DE RUFIQUE

1S1 (1415LMR)

BARRONTIC

Exercice 8:

Soit ABC, un triangle équilatéral et φ l'application qui a tout point M du plan associe le réel :

$$\varphi(M) = MA^2 + 2MB^2 - MC^2$$
. On pose $\|\overrightarrow{AB}\| = a$ avec a>0

- 1) Soit G défini par : $\overrightarrow{GB} = \frac{1}{2} \overrightarrow{AC}$. Calculer GA^2 , GB^2 et GC^2 en fonction a
- 2) Déterminer les réels α , β et δ tels que G soit le barycentre du système $\{(A, \alpha), (B, \beta), (C, \delta)\}$
- 3) Trouver et représenter l'ensemble Γ des points M satisfaisant à : $\varphi(M)=a^2$.

Exercice 9:

Soit ABC un triangle isocèle de sommet A tel que : BC=2a et AB=AC=3a où a >0.

Soit G le barycentre des points (A,2) (B,3) (C,3). Soit I le milieu de [BC], J le milieu de [AI].

- 1) Montrer que G est le milieu de [IJ].
- 2) M étant un point du plan, calculer en fonction de MG et de a : $2MA^2 + 3MB^2 + 3MC^2$
- 3) Déterminer l'ensemble des points M du plan tels que : $2MA^2 + 3MB^2 + 3MC^2 = 18a^2$
- 4) Déterminer l'ensemble E des points M du plan tels que : $2MA^2 + 3MB^2 + 3MC^2 = 22a^2$
- 5) Montrer que les droites (BC), (AB) et (AC) ont, chacune, un unique point commun avec E Que représente le point G pour le triangle ABC

Compléments exercices dans livre CIAM 1SM

Barycentre: N 26-27-30-31 Page 21
Ligne de Niveau: N 20-21-22 Page 21
Cercle: N 20-21-24-30 Page 59