

TechnoLAB – ISTA

Destiné aux Candidats BAC-TSS TechnoLAB-ISTA

Bemba dit Bamba TRAORE

Enseignant Chercheur

Tél: (00223) 69 - 50-23-20/76 - 43-95-33 mèl: bbtraoremali@yahoo.fr

Cahier du Candidat ISTA Mathématiques TSS

Les sujets et corrigés

- 1 Calcul de limite
- 2 Dérivée de fonction
- 3 Calcul de primitive
- 4 Fonction de Log et e^x
- 5 Dénombrement et Probabilité
- 6 Statistique / 2 Caractères

Bamako, mai 2023.

Module 1 : Calcul de limites

Les fonctions étudiées en TL sont :

$$f(x) = ax^2 + bx + c \qquad f(x) = \frac{ax+b}{cx+d} \qquad f(x) = \frac{ax^2 + bx + c}{kx + p}$$

• Fonction polynôme:

$$f(x) = a_0 + a_1 * x^1 + a_2 * x^2 + \dots + a_n * x^n$$
 est définie sur R : $]-\infty; +\infty[$

• Fonction rationnelle:

$$f(x) = \frac{ax+b}{cx+d} \text{ ou } f(x) = \frac{ax^2+bx+k}{cx+d} \text{ est définie ssi } cx+d \neq 0: \left]-\infty; -\frac{d}{c} \left[\cup \right] -\frac{d}{c}; +\infty \right[$$

1.- Le calcul des limites

Calcul de limite au point x_0 $\lim_{x \to x_0} f(x_0) = f(x_0) = l$

Retenons bien ceci: Calculer la limite au point x_0 revient à calculer si possible $f(x_0)$.

Exemple: $\lim_{x\to 2} (3x-5) = 3*2-5 = 1$

Exemple de calcul de limites au point x_o

Enoncé	Solution
$\lim_{x\to 2} (3x-5)$	$\lim_{x\to 2} (3x-5) = 3*2-5 = 1$
$\lim_{x\to 0} (x-1)$	$\lim_{x\to 0} (x-1) = 0 - 1 = -1$
$\lim_{x\to -1}\left(-x+3\right)$	$\lim_{x \to -1} (-x+3) = -(-1)+3=4$
$\lim_{x\to 0} \left(\frac{x-1}{x+1}\right)$	$\lim_{x \to 0} \left(\frac{x-1}{x+1} \right) = \frac{0-1}{0+1} = -1$
$\lim_{x\to 0} \left(\frac{x^2-x+2}{-x+2}\right)$	$\lim_{x \to 0} \left(\frac{x^2 - x + 2}{-x + 2} \right) = \frac{0 - 0 + 2}{-0 + 2} = 1$

Calculer la limite au point x_0 revient à calculer $f(x_0)$.

Limite à l'infini
$$\lim_{x\to+\infty} f(x_0) = f(\pm\infty) = l$$

Retenons bien ceci: Calculer la limite à l'infini $\pm \infty$ revient à remplacer x (du plus haut degré) par l'infini si possible.

Note:
$$(-\infty)^2 = +\infty$$
; $(+\infty)^2 = +\infty$; $(-\infty)^3 = -\infty$; $(+\infty)^3 = +\infty$

Retenons que:

• L'infini + un nombre = infini	$\pm \infty + 5 = \pm \infty$
• L'infini sur un nombre = infini	$\frac{\pm \infty}{5} = \pm \infty$
• un nombre sur infini = 0	$\frac{5}{\pm \infty} = 0$ le dénominateur croit plus vite que le numérateur

Exemple de calcul de limites à $\pm \infty$

La limite à l'infini d'une fonction = à la limite du monôme le plus degré. $\begin{array}{ll} Lim \\ x \to +\infty \end{array} (x^2 - 7x + 2) = \frac{Lim}{x \to +\infty} (x^2) = (+\infty)^2 = +\infty \\ Lim \\ x \to +\infty \end{array} \left(\frac{1-x}{x+1}\right) = \frac{Lim}{x \to +\infty} \left(\frac{-x}{x}\right) = -1 \\ Lim \\ x \to +\infty \end{array} \left(\frac{x^2-5}{x^3-x^2}\right) = \lim_{x \to +\infty} \left(\frac{x^2}{x^3}\right) = \lim_{x \to +\infty} \left(\frac{1}{x}\right) = \frac{1}{+\infty} = 0$ $\begin{array}{ll} Lim \\ x \to +\infty \end{array} \left(\frac{x^2-5}{4x-1}\right) = \lim_{x \to +\infty} \left(\frac{x^2}{4x}\right) = \lim_{x \to +\infty} \left(\frac{x}{4}\right) = \frac{Lim}{4} = +\infty \\ Lim \\ x \to +\infty \end{array} \left(\frac{3x-7}{x+3}\right) = \lim_{x \to +\infty} \left(\frac{3x}{x}\right) = 3$

Les formes indéterminées $\lim_{x \to x_0} f(x_0)$

Le Calcul de $f(x_0)$ peut être compliqué ce qui conduit à des formes indéterminées.

Les 4 formes indéterminées (retenues au niveau secondaire)

0	<u> </u>	$-\infty + \infty$	0 <i>x</i> ∞
$\overline{0}$	∞		

Comment lever l'indétermination (niveau TSS)

- Factoriser le numérateur et le dénominateur puis simplifier pour la limite en x₀
- Prendre le monôme le plus haut degré pour la limite en ∞.

Exercices : Après avoir levé l'indétermination calculer la limite de chacune des fonctions.

Enoncés	Solutions
$\lim_{x\to 0} \left(\frac{x}{x^2-x}\right)$	$\lim_{x\to 0} \left(\frac{x}{x^2-x}\right) = \frac{0}{0} \ F \ Ind \ \text{Levons l'indétermination : on factorise}$
Réponse : -1	le dénominateur puis on simplifie : $\frac{x}{x^2-x} = \frac{x}{x(x-1)} = \frac{1}{x-1}$
	$\lim_{x\to 0} \left(\frac{x}{x^2-x}\right) = \lim_{x\to 0} \left(\frac{1}{x-1}\right) = -1$
$\lim_{x\to 3} \left(\frac{3-x}{x^2-9}\right)$	$\begin{pmatrix} \lim_{x \to 3} & \left(\frac{3-x}{x^2-9}\right) = \frac{0}{0} \; F \; Ind \; . \; $ Levons l'indétermination : on factorise
Réponse : $\frac{1}{6}$	le dénominateur puis on simplifie : $\frac{3-x}{x^2-9} = \frac{3-x}{(x-3)(x+3)} = \frac{-1}{x+3}$
	$\lim_{x\to 3} \left(\frac{3-x}{x^2-9}\right) = \lim_{x\to 3} \left(\frac{1}{x+3}\right) = \frac{1}{6}$

Calcul de limite dont le résultat donne $\frac{nombre}{0} = \pm \infty$

Retenons que:

Un nombre sur 0 égal infini.	$\frac{5}{-} = +\infty$; $\frac{-5}{-} = -\infty$; $\frac{5}{-} = -\infty$; $\frac{-5}{-} = +\infty$
Quel infini ?	0+ ' '0+ '0- '0-

Réchauffement 1:

Calcule la limite $\lim_{x \to 5} \left(\frac{1-x}{x-5} \right) = \frac{1-5}{5-5} = \frac{-5}{0}$ (Un nombre sur 0 égal infini) on étudie la limite à droite $x \to 5^+$ et la limite à gauche $x \to 5^-$. Cela revient à étudier le signe du dénominateur ax+b.

Rappelons que : ax + b est du signe de « a » à droite et le contraire à gauche.

 $\rightarrow x - 5$ le signe à droite est + alors 0^+ et le signe à gauche est - alors 0^-

Calcule la limite $\lim_{x \to 5} \left(\frac{1-x}{x-5} \right) = \frac{-5}{0}$ on calcule la limite à droite $(x \to 5^+)$ et la limite à gauche $(x \to 5^-)$.

Limite
$$x \to 5^+$$
 $(x \to 5)^+$ $(x \to 5)^+$

Réchauffement 1:

Calcule la limite $\lim_{x \to 3} \frac{x+1}{6-2x} = \frac{3+1}{6-6} = \frac{4}{0}$ (Un nombre sur 0 égal infini)

On étudie la limite à droite $x \to 3^+$ et la limite à gauche $x \to 3^-$.

Cela revient à étudier le signe du dénominateur « ax+b ».

Rappelons que : ax + b est du signe de « a » à droite et le contraire à gauche.

 \rightarrow 6 – 2x le signe à droite est – alors 0⁻et le signe à gauche est + alors 0⁺

Calcule la limite $\lim_{x \to 3} \left(\frac{x+1}{6-2x} \right) = \frac{4}{0}$ on calcule la limite à droite $(x \to 3^+)$ et la limite à gauche $(x \to 3^-)$.

Retenons bien

Le binôme « ax + b » est du signe de « a » à droite et le contraire à gauche.

Ex : 1 - 3x le signe est (-) à droite et le signe est (+) à gauche

Ex: 6 + 2x le signe est (+) à droite et le signe est (-) à gauche

Exemple à faire : Calcule la limite

$\lim_{x \to 2} \left(\frac{-x}{-x+2} \right)$	$\lim_{x \to 2} \left(\frac{7-x}{4-2x} \right)$
$\lim_{x \to 1} \left(\frac{2x+5}{x-1} \right)$	$\lim_{x \to -2} \left(\frac{2x+1}{5x+10} \right)$
$\lim_{x\to 2^{-}} \left(\frac{x}{x-2}\right)$	$\lim_{x\to 0^+} \left(\frac{x-3}{x}\right)$
$\lim_{x\to 1^{-}} \left(\frac{2x-5}{1-x}\right)$	$\lim_{x\to 0^{-}} \left(\frac{x+2}{x}\right)$
$\lim_{x\to 0^{-}} \left(\frac{x-3}{x}\right)$	$\lim_{x\to 0^+} \left(\frac{x+3}{-x}\right)$

2.- Les 3 asymptotes à la courbe

$$\lim_{x\to\infty} (f(x)) = b$$
. Alors $y = b$ est asymptote horizontale AH

$$\lim_{x \to x_0} (f(x)) = \infty$$
. Alors $x = x_0$ est asymptote verticale A V

$$\lim_{x\to\infty} (f(x) - (ax + b)) = 0$$
. Alors $y = ax + b$ est asymptote oblique A O.

Exercice 1:

On considère la fonction numérique f définie par :

a.-
$$f(x) = 3x^2 - 7x + 2$$
 b.- $f(x) = \frac{2x-1}{x+3}$ c.- $f(x) = \frac{x^2 - x + 3}{2-x}$

Déterminer (si possible) les asymptotes à la courbe de f.

Solution 1:

a.-
$$f(x) = 3x^2 - 7x + 2$$
 est définie sur R : $]-\infty$; $+\infty[$

$$\lim_{x \to -\infty} (3x^2 - 7x + 2) = \lim_{x \to \infty} (3x^2) = \mathbf{3}(-\infty)^2 = +\infty$$

$$\lim_{x \to +\infty} (3x^2 - 7x + 2) = \lim_{x \to +\infty} (3x^2) = \mathbf{3}(+\infty)^2 = +\infty$$

Il n'existe pas d'asymptote à cette courbe.

b.-
$$f(x) = \frac{2x-1}{x+3}$$
 est définie sur $\mathbf{R} - \{-3\} =]-\infty$; $-3[\cup]-3$; $+\infty[$

$$\lim_{x \to +\infty} \frac{\lim_{x \to +\infty} \left(\frac{2x-1}{x+3}\right) = \lim_{x \to +\infty} \left(\frac{2x}{x}\right) = \mathbf{2} \text{ alors } \mathbf{y} = \mathbf{2} \text{ A H.}$$

$$\lim_{x \to -3} \frac{\lim_{x \to -3} \left(\frac{2x-1}{x+3}\right) = \frac{2(-3)-1}{-3+3} = \frac{-7}{0^-} = +\infty \text{ alors } \mathbf{x} = -3 \text{ A V.}$$

Il existe deux asymptote : y = 2 et x = -3.

c.-
$$f(x) = \frac{x^2 - x + 3}{2 - x}$$
 est définie sur $\mathbf{R} - \{2\} =] - \infty$; $2[\cup]2 ; + \infty[$

$$\lim_{x \to +\infty} \left(\frac{x^2 - x + 3}{2 - x} \right) = \lim_{x \to +\infty} \left(\frac{x^2}{-x} \right) = \lim_{x \to +\infty} \left(-x \right) = -\infty \quad \mathbf{il} \not\equiv \mathbf{A} \mathbf{H}.$$

$$\lim_{x \to 2^+} \left(\frac{x^2 - x + 3}{2 - x} \right) = \frac{\mathbf{4} - 2 + 3}{2 - 2} = \frac{\mathbf{5}}{\mathbf{0}^+} = +\infty \quad \mathbf{alors} \ \mathbf{x} = \mathbf{2} \mathbf{A} \mathbf{V}.$$

Existence d'asymptote oblique car le degré du numérateur dépasse celui du dénominateur de 1. On effectue la division euclidienne :

$x^2 - x + 3$	2-x	$f(w) = \frac{5}{1 + \frac{1}{2}}$
$-x^2+2x$	-x-1	$f(x) = -x - 1 + \frac{3}{2 - x}$
x+3		y = -x - 1 asymptote oblique.
-x+2		
5		

Il existe deux asymptote : x = 2 et y = -x - 1.

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

Sujets d'application sur le calcul de limite

Exercice 1:

On considère la fonction numérique f définie par :

$$f(x) = x^2 - 2x + 3$$

- **1-**/ Déterminez l'ensemble de définition de f.
- **2-/** Calculez la limite de f aux bornes du domaine de définition
- **3-**/ En déduire si possible les asymptotes à la courbe de f.

Solution 1:

$$f(x) = x^2 - 2x + 3$$
 est définie sur R : $]-\infty$; $+\infty[$
 $_{x \to -\infty}^{Lim} (x^2 - 2x + 3) = _{x \to \infty}^{Lim} (x^2) = (-\infty)^2 = +\infty$
 $_{x \to +\infty}^{Lim} (x^2 - 2x + 3) = _{x \to +\infty}^{Lim} (x^2) = (+\infty)^2 = +\infty$

Il n'existe pas d'asymptote à cette courbe.

Exercice 2:

On considère la fonction numérique f définie par : $f(x) = \frac{x+1}{x-3}$

- **1-/** Déterminez l'ensemble de définition de f.
- 2-/ Calculez la limite de f aux bornes du domaine de définition
- **3-/** En déduire si possible les asymptotes à la courbe de f.

Solution 2

$$f(x) = \frac{x+1}{x-3} \text{ est définie sur } \mathbf{R} - \{3\} =]-\infty; \ 3[\ \cup\]3; \ +\infty[$$

$$\lim_{x \to +\infty} \left(\frac{x+1}{x-3}\right) = \lim_{x \to +\infty} \left(\frac{x}{x}\right) = \mathbf{1} \quad \text{alors } \mathbf{y} = \mathbf{1} \quad \mathbf{A} \quad \mathbf{H}.$$

$$\lim_{x \to 3^{-}} \left(\frac{x+1}{x-3}\right) = \frac{+3+1}{3-3} = \frac{4}{0^{-}} = -\infty \quad \text{alors } \mathbf{x} = \mathbf{3} \quad \mathbf{A} \quad \mathbf{V}.$$

$$\lim_{x \to 3^{+}} \left(\frac{x+1}{x-3}\right) = \frac{+3+1}{3-3} = \frac{4}{0^{+}} = +\infty \quad \text{alors } \mathbf{x} = \mathbf{3} \quad \mathbf{A} \quad \mathbf{V}.$$

Il existe deux asymptotes : y = 1 et x = 3.

Exercice 3:

On considère la fonction numérique f définie par : $f(x) = \frac{6x+1}{4-2x}$

- 1-/ Déterminez l'ensemble de définition de f.
- 2-/ Calculez la limite de f aux bornes du domaine de définition
- 3-/ En déduire si possible les asymptotes à la courbe de f.

Solution

$$f(x) = \frac{6x+1}{4-2x} \text{ est définie sur } \mathbf{R} - \{2\} =]-\infty; \ 2[\ \cup\]2; \ +\infty[$$

$$\lim_{x \to +\infty} \left(\frac{6x+1}{4-2x}\right) = \lim_{x \to +\infty} \left(\frac{6x}{-2x}\right) = -3 \text{ alors } \mathbf{y} = -3 \text{ A H.}$$

$$\lim_{x \to 2^{-}} \left(\frac{6x+1}{4-2x}\right) = \frac{12+1}{4-4} = \frac{13}{0^{+}} = +\infty \text{ alors } \mathbf{x} = 2 \text{ A V.}$$

$$\lim_{x \to 2^{+}} \left(\frac{6x+1}{4-2x}\right) = \frac{12+1}{4-4} = \frac{13}{0^{-}} = -\infty \text{ alors } \mathbf{x} = 2 \text{ A V.}$$

Il existe deux asymptotes : y = 3 et x = 2.

Module 2 : Dérivée d'une fonction

La dérivée d'une fonction f décrit la variation de la fonction f'.

Dérivée d'une constante est nulle :

$$f(x) = 7 \implies \text{dérivée } f'(x) = 0$$

Dérivée de « kx » est égale à « k »

$$f(x) = 7x \rightarrow \text{dérivée } f'(x) = 7$$

$$f(x) = x \rightarrow \text{dérivée } f'(x) = 1$$

$$f(x) = -x \rightarrow \text{dérivée } f'(x) = -1$$

$$f(x) = \frac{1}{2}x$$
 \rightarrow dérivée $f'(x) = \frac{1}{2}$

$$f(x) = 6x + 3$$
 \rightarrow dérivée $f'(x) = 6$

$$f(x) = -x + 1 \Rightarrow \text{dérivée } f'(x) = -1$$

Dérivée de « k xⁿ » est égale à « k.n.xⁿ⁻¹ »

$$f(x) = 5x^2$$
 dérivée $f'(x) = 10x$

$$f(x) = 4x^3$$
 dérivée $f'(x) = 12x^2$

$$f(x) = x^2 - x + 2$$
 \rightarrow dérivée $f'(x) = 2x - 1$

$$f(x) = 4x^3 - 7x^2 + 5x + 1$$
 \rightarrow dérivée $f'(x) = 12x^2 - 14x + 5$

Dérivée de « $\frac{1}{x}$ » est égale à « $\frac{-1}{x^2}$ »

$$f(x) = \frac{1}{x}$$
 dérivée $f'(x) = \frac{-1}{x^2}$

$$f(x) = \frac{x^2-1}{x}$$
 dérivée $f'(x) = \frac{1}{x^2}$

$$f(x) = 3x^2 + 5x - \frac{1}{x} + 3$$
 dérivée $f'(x) = 6x + 5 + \frac{1}{x^2}$

Dérivée de « $\frac{1}{x^n} = x^{-n}$ » est égale à « $-nx^{-n-1} = \frac{-n}{x^{n+1}}$ »

$$f(x) = \frac{1}{x^5}$$
 dérivée $f'(x) = \frac{-5}{x^6}$

$$f(x) = \frac{1}{x^{10}}$$
 dérivée $f'(x) = \frac{-10}{x^{11}}$

Dérivée de « \sqrt{x} » est égale à « $\frac{1}{2\sqrt{x}}$ »

Exercice : Réchauffement sur la dérivée première :

1.-
$$f(x) = 4x^5 + 4x^4 - 5x^3 + x + 3$$
 la dérivée $f'(x) = 20x^4 + 16x^3 - 15x^2 + 1$

2.-
$$f(x) = -x^5 + x^4 - x^3 + 5x + 20$$
 la dérivée $f'(x) = -5x^4 + 4x^3 - 3x^2 + 5$

Dérivée de fonction

$$f(x) = u^n \rightarrow \text{dérivée } f'(x) = n. u'. u^{n-1}$$

$$f(x) = (2x+3)^2 \implies$$
 c'est de la forme $[u^n]' = n \cdot u' \cdot u^{n-1}$

on pose
$$u = 2x + 3$$
 et $u' = 2$ et $n = 2$

$$f'(x) = 2 * 2 * (2x + 3)^{2-1} \implies f'(x) = 4 (2x + 3)^{1}$$

$$f(x) = \frac{u}{v}$$
 dérivée $f'(x) = \frac{u' \cdot v - v'u}{v^2}$

$$f(x) = \frac{2x+3}{5x+1}$$
 \Rightarrow c'est de la forme $\left[\frac{u}{v}\right]' = \frac{u'*v-v'u}{v^2}$

on pose
$$u = 2x + 3$$
 et $u' = 2$ $\Rightarrow v = 5x + 1$ et $v = 5$

$$f'(x) = \frac{2(5x+1)-5(2x+3)}{(5x+1)^2} = \frac{10x+2-10x-15}{(5x+1)^2} = \frac{-13}{(5x+1)^2} \implies f'(x) = \frac{-13}{(5x+1)^2}$$

$$f(x) = \frac{x^2 + 5x - 1}{x + 3}$$
 \Rightarrow c'est de la forme $\left[\frac{u}{v}\right]' = \frac{u' * v - v'u}{v^2}$

on pose
$$u = x^2 + 5x - 1$$
 et $u' = 2x + 5$ $\Rightarrow v = x + 3$ et $v = 1$

$$f'(x) = \frac{(2x+5)(x+3)-(1)(x^2+5x-1)}{(x+3)^2} = \frac{2x^2+6x+5x+15-x^2-5x+1}{(x+3)^2} = \frac{x^2+6x+16}{(x+3)^2}$$

$$f'(x) = \frac{x^2 + 6x + 16}{(x+3)^2}$$

$$f(x) = u * v \rightarrow Dérivée f'(x) = u' * v + v'u$$

$$f(x) = (2x-1)(4-7x) \rightarrow \text{c'est de la forme } [u*v]' = u'*v + v'u$$

on pose
$$u = 2x - 1$$
 et $u' = 2$ $\Rightarrow v = 4 - 7x$ et $v = -7$

$$f'(x) = (2)(4-7x) + (-7)(2x-1) = 8-14x-14x+7 = 15 \implies f'(x) = 15$$

$$f(x) = \sqrt{u}$$
 Dérivée $f'(x) = \frac{u'}{2\sqrt{u}}$

$$f(x) = \sqrt{2x+3}$$
 \rightarrow c'est de la forme $\left[\sqrt{u}\right]' = \frac{u'}{2\sqrt{u}}$

on pose
$$u = 2x + 3$$
 et $u' = 2$ $\implies f'(x) = \frac{2}{2\sqrt{2x+3}}$

Exercice 1 : Soient les fonctions numériques :

$$f(x) = (5x+3)^2$$
 $f(x) = (x^2-2x+3)^4$ $f(x) = \frac{1}{(3x^2-7x)}$

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

Equation de la tangente $T: y = f'(x_0) (x - x_0) + f(x_0)$

Exercice 1:

On considère la fonction numérique f définie par :

$$f(x) = x^2 - 2x + 3$$

1-/ Déterminez l'ensemble de définition de *f* .

2-/ Calculez la fonction dérivée de f.

3-/ Écrire une équation de la tangente à la courbe de f au point A d'abscisse $x_0 = 1$

Solution:

1.-/ La fonction $f(x) = x^2 - 2x + 3$ est définie sur R $Df =]-\infty; +\infty[$

2.-/
$$f(x) = x^2 - 2x + 3 \implies f'(x) = 2x - 2$$

3.-/ Equation de la tangente T: $y = f'(x_0)(x - x_0) + f(x_0)$

$$f(1) = 1^2 - 2 * 1 + 3 = 2$$
 et $f'(1) = 2 * 1 - 2 = 0$

$$T: y = 0 * (x - 1) + 2 \rightarrow T: y = 2$$

Exercice 2:

On considère la fonction numérique f définie par :

$$f(x) = \frac{x-1}{x+1}$$

1-/ Déterminez l'ensemble de définition de *f* .

2-/ Calculez la fonction dérivée de f.

3-/ Écrire une équation de la tangente à la courbe de f au point A d'abscisse $x_0 = 0$

Solution:

1.-/ La fonction
$$f(x) = \frac{x-1}{x+1}$$
 est définie si $x + 1 \neq 0 \implies x \neq -1$

$$Df =]-\infty; -1[\cup]-1; +\infty[$$

2.-/
$$f(x) = \frac{x-1}{x+1} \rightarrow f'(x) = \frac{2}{(x+1)^2}$$

3.-/ Equation de la tangente T: $y = f'(x_0)(x - x_0) + f(x_0)$

$$f(0) = \frac{0-1}{0+1} = -1$$
 et $f'(0) = \frac{2}{(0+1)^2} = 2$

$$T: y = (2) * (x - 0) + (-1) \rightarrow T: y = 2x - 1$$

Les étapes de l'étude d'une fonction

1ère étape : domaine de définition

Exemple : déterminer le domaine de définition de chacune des fonctions :

$$f(x) = x^2 - 3x + 2$$
 \rightarrow C'est une fonction polynôme $Df = R =]-\infty$; $+\infty$

$$g(x) = \frac{2x+1}{x-1}$$
 C'est une fonction rationnelle on doit poser le dénominateur différent de zéro

$$Dg = R =]-\infty; 1[\cup]1; +\infty[$$

$$h(x) = \frac{x^2 - 3x + 7}{2x + 6}$$
 C'est une fonction rationnelle on doit poser le dénominateur différent de zéro

$$Dh =]-\infty; -3[\cup]-3; +\infty[$$

2ème étape : limites aux bornes

Exemple : déterminer la limite aux bornes du domaine de définition de chacune des fonctions :.

$$1-|f(x)| = x^2 - 3x + 2$$
 \rightarrow C'est une fonction polynôme $Df = R =]-\infty; +\infty[$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^2 = +\infty$$
2.-\(\frac{1}{2}g(x) = \frac{2x+1}{x-1} \rightarrow Dg = R = \frac{1}{2}-\infty; \frac{1}{2}[\cup]1; \quad +\infty[

2.-/
$$g(x) = \frac{2x+1}{x-1}$$
 $\rightarrow Dg = R =]-\infty; 1[\cup]1; +\infty[$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{2x}{x} = 2$$

$$\lim_{x \to 1^{-}} g(x) = \frac{3}{0^{-}} = -\infty$$

$$\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} \frac{2x}{x} = 2$$

$$\lim_{x \to 1^{+}} g(x) = \frac{3}{0^{+}} = +\infty$$

3ème étape : dérivée de la fonction

Exemple : déterminer la dérivée de chacune des fonctions :

$$f(x) = x^2 - 4x + 2 \Rightarrow f'(x) = 2x - 4$$

$$f(x) = \frac{2x+1}{x-1}$$
 $f'(x) = \frac{-3}{(x-1)^2}$

4ème étape : le signe de f' (x) et le sens de variation de f(x)

Signe de f(x)

$$f'(x) = 0 \Rightarrow$$
 on trouve x_0 puis on calcule $f(x_0) \Rightarrow$ le sommet $S = (x_0; f(x_0))$

Si
$$f'(x_0) < 0$$
 la fonction est décroissante

Si
$$f'(x_0) > 0$$
 la fonction est croissante

Tableau de variation

x	$-\infty$	x_0	+∞
$f'(x) = ax + b \ (a > 0)$	_	+	-
f(x)			
		$f(x_0)$	

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

Tableau de variation

x	-∞	x_0	+∞
$f'(x) = ax + b \ (a < 0)$	+		_
f(x)		$f(x_0)$	

5ème étape : – Les asymptotes à la courbe

• Détermination des asymptotes à la courbe (fonction de type $h(x) = \frac{f(x)}{g(x)}$)

L'asymptote verticale AV est l'équation du domaine de définition

$$Df = R - \{a\} \rightarrow l$$
'asymptote verticale $x = a$

$$f(x) = \frac{2x+1}{x-1}$$
 f est définie ssi $x \ne 1$ alors $AV: x = 1$

L'asymptote horizontale AH

$$\lim_{x \to \pm \infty} f(x) = b \implies y = b \text{ est l'AH}$$

$$f(x) = \frac{2x+1}{x-1} \implies \lim_{x \to \pm \infty} f(x) = \lim_{x \to -\infty} \frac{2x}{x} = 2 \quad \text{alors } A \ H: y = 2$$

L'asymptote oblique A.O: conditions d'existence de l'AO: y= ax +b

→ Lorsque la différence des degrés du numérateur et du dénominateur égal à 1

$$\Rightarrow f(x) = ax + b - \frac{c}{dx+e}$$
 alors A.O: $y = ax + b$

Exemple 1: Présenter le tableau de variation de la fonction : $f(x) = x^2 - 4x + 2$ **Réponse**

$$f(x) = x^2 - 4x + 2 \rightarrow f'(x) = 2x - 4 = 0 \rightarrow x = 2 \text{ et } f(2) = -2$$

 \rightarrow Le sommet $S = (2; -2)$

Tableau de variation

x	-∞	2	+∞
f'(x)=2x-4	_	-	H
f(x)	+∞		-8
		-2	

Module 3 : Calcul de primitive

Une primitive F(x) est la fonction initiale tirée de sa dérivée première f'(x). F'(x) = f(x)

Par exemple:

- si f(x) = x est la dérivée alors une primitive est $F(x) = \frac{1}{2} x^2$.
- si $f(x) = \frac{1}{3}x^2$ est la dérivée alors une primitive est $F(x) = x^3$.
- si f(x) = x est la dérivée alors une primitive est $F(x) = \frac{1}{2} x^2$.

Primitive usuelle

Fonction $f(x)$	Primitive $F(x)$
f(x) = a	F(x) = ax + k
$f(x)=ax^n$	$F(x) = \frac{a \cdot x^{n+1}}{n+1} + k$
$f(x) = \frac{1}{x^2}$	$F(x) = \frac{-1}{x} + k$
$f(x) = \frac{1}{x^n}$	$F(x) = \frac{-1}{(n-1)x^{n-1}} + k$
$f(x) = \frac{1}{x}$	$F(x) = \ln x + k$
$f(x) = e^{ax}$	$F(x) = \frac{e^{ax}}{a} + k$

Cas des fonctions irrationnelles : $\sqrt[n]{x} = x^{\frac{1}{n}}$ $\sqrt[n]{x^p} = x^{\frac{p}{n}}$

Primitive composée

Fonction $f(x)$	Primitive $F(x)$
$f(x)=u'u^n$	$F(x) = \frac{u^{n+1}}{n+1} + k$
$f(x) = \frac{u'}{u^2}$	$F(x) = \frac{-1}{u} + k$
$f(x) = \frac{u'}{u^n}$	$F(x) = \frac{-1}{(n-1)u^{n-1}} + k$
$f(x) = \frac{u'}{u}$	$F(x) = \ln u + k$
$f(x) = u'e^u$	$F(x)=e^u+k$

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33 Exercices de réchauffement et corrigés

Enoncés	Corrigés	Enoncés	Corrigés
f(x)=5	F(x)=5x+k	$f(x) = \sqrt{x} = x^{\frac{1}{2}}$	$F(x) = \frac{2}{3}x^{\frac{3}{2}} + k$
f(x)=7x	$F(x) = \frac{7}{2}x^2 + k$	$f(x) = \sqrt[3]{x} = x^{\frac{1}{3}}$	$F(x) = \frac{3}{4}x^{\frac{4}{3}} + k$
$f(x)=x^8$	$F(x) = \frac{1}{9} x^9 + k$	$f(x) = \sqrt[7]{x} = x^{\frac{1}{7}}$	$F(x) = \frac{7}{8}x^{\frac{8}{7}} + k$
f(x)=(2x+1)	$F(x) = x^2 + x + k$	$f(x) = \frac{1}{x^2} = x^{-2}$	$F(x) = \frac{1}{-1} x^{-1} + k$
f(x)=5	F(x) = 5x + k	$f(x) = \frac{1}{x^5} = x^{-5}$	$F(x) = \frac{1}{-4} x^{-4} + k$
$f(x) = \frac{5}{x}$	$F(x) = \ln x + k$	$f(x) = e^{-3x}$	$F(x) = \frac{e^{-3x}}{-3} + k$

Application de la formule :
$$I = \int u' u^n = \frac{u^{n+1}}{n+1} + k$$

• Calculer l'ensemble des primitives de $f(x) = (2x - 7)(x^2 - 7x + 2)^5$

C'est la forme
$$\int u' u^n = \frac{u^{n+1}}{n+1}$$
 on pose $u = x^2 - 7x + 2 \implies u' = 2x - 7$

$$I = \int (2x - 7)(x^2 - 7x + 2)^5 dx = \frac{(x^2 - 7x + 2)^6}{6}$$

• Calculer l'ensemble des primitives de $f(x) = (2x-3)(x^2-3x+5)^7$

C'est la forme
$$\int u' u^n = \frac{u^{n+1}}{n+1}$$
 on pose $u = x^2 - 3x + 5 \Rightarrow u' = 2x - 3$

$$I = \int (2x-3) (x^2-3x+5)^7 dx = \frac{(x^2-3x+5)^8}{8} + k$$

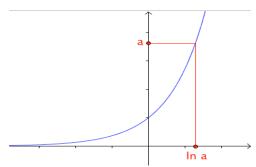
• Calculer l'ensemble des primitives de :

$$f(x) = (2x-5)^9$$
 $f(x) = (x-1)(7x^2-14x+2)^3$

Module 5 : fonction Log x et e^x

I. Définitions

La fonction exponentielle est continue et strictement croissante sur \mathbb{R} , à valeurs dans $]0; +\infty[$. D'après le théorème des valeurs intermédiaires, pour tout réel a de $]0; +\infty[$ l'équation $e^x = a$ admet une unique solution dans \mathbb{R} .



Définition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation $e^x = a$. On la note $\ln a$.

La fonction logarithme népérien, notée ln, est la fonction :

$$\ln:]0; +\infty[\rightarrow R$$

 $x \mapsto \ln x$

Remarques:

- Les fonctions exp et ln sont des fonctions réciproques l'une de l'autre.
- Les courbes représentatives des fonctions exp et ln sont symétriques par rapport à la droite d'équation y = x.
- Dans le domaine scientifique, on utilise la fonction logarithme décimal, Notée log est définie par : $log x = \frac{ln x}{ln 10}$

Conséquences:

a.-)
$$y = \ln x \text{ avec } x > 0 \iff x = e^y$$

b.-)
$$\ln 1 = 0$$
; $\ln e = 1$; $\ln \frac{1}{e} = -1$

c.-) Pour tout
$$x$$
, $\ln e^x = x$

d.-) Pour tout x strictement positif, $e^{\ln x} = x$.

Exemples: résoudre dans R:

•
$$\ln x = 5$$
; $\ln(x + 2) = 8$

$$\bullet \quad \ln(3x-1)=4\;;$$

$$\ln x = 5 \implies x = e^5 \qquad \ln(x+2) = 8 \implies x+2 = e^8 \implies x = e^8 - 2$$
$$\ln(3x-1) = 4 \implies 3x - 1 = e^4 \implies x = \frac{e^4 + 1}{3}$$

II. Cas de fonction logarithme népérien

1.-) Relation fonctionnelle : pour tous réels x et y strictement positifs, on a :

- $\ln(x.y) = \ln x + \ln y$
- $\ln\left(\frac{x}{y}\right) = \ln x \ln y$
- $\ln \frac{1}{x} = -\ln x$
- $\ln x^n = n \ln x$

- $y = \ln x \text{ avec } x > 0 \iff x = e^y$
- $\ln 1 = 0$; $\ln e = 1$; $\ln \frac{1}{e} = -1$
- Pour tout x, $\ln e^x = x$
- Pour tout *x* strictement positif, $e^{\ln x} = x$

2.-) Opération de fonction ln x

$$\ln x + \ln y \neq \ln(x + y)$$

$$\ln 1 = 0 \qquad \qquad \ln e = 1$$

$$a \ln x + b \ln x = (a+b) \ln x$$

$$\ln e^2 = 2$$

$$\ln e^x = x$$

La fonction réciproque de $\ln x$ est $e^x \rightarrow \ln e^x = x$ et $e^{\ln x} = x$

- **Exemple**: $\ln e^8 = 8$
- $e^{\ln 8} = 8$

Exemple 1: simplifie

- $A = \ln 8 5 \ln 32 3 \ln 64$
- $B = 2 \ln 27 + \ln 9 5 \ln 81$
- $C = \ln 5 + \ln 125 2 \ln 625$

Réponse :

- \rightarrow A = ln 2³ 5 ln 2⁵ 3 ln 2⁶ = 3 ln 2 25 ln 2 18 ln 2 = -40 ln 2
- → B = $2 \ln 3^3 + \ln 3^2 5 \ln 3^4 = 6 \ln 3 + 2 \ln 3 20 \ln 3 = -12 \ln 3$
- ightharpoonup C = $\ln 5 + \ln 5^3 5 \ln 5^4 = \ln 5 + 3 \ln 5 20 \ln 5 = -16 \ln 5$

Exemple: simplifier les expressions

- $A = 5 \ln a + 6 \ln a 3 \ln a$
- \rightarrow A = 8 ln a

 $B = 2 \ln a - 5 \ln a$

- \rightarrow B = -3 ln a
- $C = \ln 3 + 4 \ln 3 7 \ln 3$
- \rightarrow C = -2 ln a

Exemple : simplifier les écritures

$$A = e^{\ln 4} + \ln e^3 + \ln e^{-5} - e^{\ln 2}$$

$$B = \ln 2^5 - \ln 8 + \ln 32 - \ln 64$$
. (1pt)

Solution:

$$A = e^{\ln 4} + \ln e^3 + \ln e^{-5} - e^{\ln 2} = 4 + 3 - 5 - 2 = 0$$

$$B = \ln 2^5 - \ln 8 + \ln 32 - \ln 64 = 5 \ln 2 - 3 \ln 2 + 5 \ln 2 - 6 \ln 2 = \ln 2$$

3.-) Domaine de définitions d'une fonction ln x

ln(f(x)) est défini ssi f(x) > 0. Ce qui veut dire le logarithme d'un nombre négatif ou nul n'existe pas.

$$f(x) = ln(g(x))$$
 est définie ssi $g(x) \in]0$; $+\infty[$

Déterminer le domaine de définition

$f(x) = \ln\left(4 - x^2\right)$	$f(x) = \ln\left(\frac{1-x}{x+2}\right)$	$f(x) = \ln 4 - x^2 $	$f(x) = \frac{1}{\ln x}$
$f(x) = \ln\left(2x^2 - x\right)$	$f(x) = \ln(x^2 + 4)$	$f(x) = \ln 2+x $	$f(x) = \ln \frac{1}{x}$

Solution 1: $f(x) = \ln (4 - x^2)$ est définie ssi $4 - x^2 > 0 \rightarrow$ c'est le signe du trinôme : le signe de « a » (-) à l'extérieur des deux racines -2 et 2 et le signe contraire (+) entre les deux racines \rightarrow Df =]-2; 2[.

Solution 2: $f(x) = \ln \left(\frac{1-x}{x+2}\right)$ est définie ssi $\frac{1-x}{x+2} > 0$ et $x+2 \neq 0$

X	-∞ -2	+1	+∞	Explication
1-x	+	+	-	Le signe – à droite de 1 et + à gauche
x + 2	-	+	+	Le signe + à droite de -2 et – à gauche
$\frac{1-x}{x+2}$	-	+	-	
<u>x+2</u>	non	oui	Non	

$$Df =]-2; 1[$$

Solution 3: $f(x) = \ln |4 - x^2|$ est définie ssi $4 - x^2 \neq 0 \implies x \neq -2$ et $x \neq 2$ $Df =]-\infty; -2[\cup]-2; 2[\cup]2; +\infty[$.

Solution 4: $f(x) = \frac{1}{\ln x}$ est définie ssi $\ln x \neq 0$ et x > 0 $\Rightarrow \ln x \neq 0 \Rightarrow x \neq e^0 = 1 \Rightarrow Df =]0; 1[\cup]1; +\infty[$

Solution 5: $f(x) = \ln (2x^2 - x)$ est définie ssi $2x^2 - x > 0$

X	$-\infty$	0	+1/2	2	+∞
$2x^{2} - x$	+		-	+	
	Oui		Non	Oui	

$$Df =]-\infty; \ 0[\ \cup \]\frac{1}{2}; +\infty[$$

4.-) Limites des fonctions logarithmes

Calcul de limites (Log)

* utilisation des limites usuelles :

Exemple:

a.
$$\lim_{u \to 0} (x \ln x) = 0$$
 b. $\lim_{u \to 0} (\ln x) = -\infty$

$$\mathbf{c.} \lim_{u \to \infty} \left(\ln \frac{x+1}{x^2 - 3} \right) = \lim_{u \to \infty} \left(\ln \frac{1}{x} \right) = \lim_{u \to \infty} \left(\ln \frac{1}{\infty} \right) = \lim_{u \to \infty} \left(\ln 0 \right) = -\infty$$

d.
$$\lim_{u \to \infty} \left(\ln \frac{x^2 + 1}{x - 3} \right) = \lim_{u \to \infty} \left(\ln x \right) = +\infty$$
; **e.** $\lim_{u \to \infty} \left(x \ln^2 x \right) = 0$

5.-) Dérivée : cas des fonctions ln x

$$f(u) = \ln(u) \rightarrow f'(u) = \frac{u'}{u}$$
 $f(u) = \ln|u| \rightarrow f'(u) = \frac{u'}{u}$

Exemple:

$$f(x) = \ln x \implies f'(x) = \frac{1}{x}$$

$$f(x) = \ln x^2 \implies f'(x) = \frac{2x}{x^2} = \frac{2}{x}$$

$$f(x) = \ln (x^2 - 2x + 3) \implies f'(x) = \frac{2x - 2}{x^2 - 2x + 3}$$

$$\implies f(x) = \ln (3x + 2) \qquad f'(x) = \frac{3}{3x + 2}$$

$$\implies f(x) = \ln (\frac{1}{x}) \implies f'(x) = \frac{\frac{-1}{x^2}}{\frac{1}{x}} = -\frac{1}{x}$$

6.-) Primitive

La fonction
$$f(x) = \frac{1}{x} \implies F(x) = \ln |x| + k \implies I = \int_{x}^{1} \frac{1}{x} dx = \ln |ax| + k$$

La fonction
$$f(x) = e^{ax} \rightarrow F(x) = \frac{e^{ax}}{a} + k \rightarrow I = \int e^{ax} dx = \frac{e^{ax}}{a} + k$$

La fonction
$$f(u) = \frac{u'}{u}$$
 Primitive est $F(x) = \ln |u| + k$ (k constante réelle)

La fonction
$$f(u) = u' e^u \rightarrow Primitive est F(x) = e^u + k$$
 (k constante réelle)

III.-/ Cas des fonctions exponentielles ex

• Domaine de définition

La fonction exponentielle est définie sur R.

Exemple:

a.
$$f(x) = e^x$$
 est définie sur R

b.
$$f(x) = e^{\frac{1}{x}}$$
 est définie sur $R - \{0\}$

c.
$$f(x) = e^{\frac{2x}{x-1}}$$
 est définie sur $R - \{1\}$

• Calcul de limites $(e^{f(x)})$

* utilisation des limites usuelles :

Limite
$$e^u = 1$$

$$\lim_{u\to+\infty} e^u = +\infty$$

$$\lim_{u \to -\infty}^{Limite} e^u = 0$$

Exemple:

a.
$$\lim_{x \to +\infty} \frac{x}{e^x} = 0$$
 (numérateur croit plus vite que le dénominateur)

b.
$$\lim_{x \to +\infty}^{\text{Limite}} \frac{e^x}{x} = +\infty$$
 (dénominateur croit plus vite que le numérateur)

C.
$$\lim_{x\to+\infty}^{Limite} e^{-x} = 0$$

$$\lim_{x \to +\infty}^{\text{Limite}} e^{\frac{2x+1}{3x-1}} = e^{\frac{2}{3}}$$

Calcul de dérivée : cas des fonctions ex

$$f(x) = e^u \rightarrow f'(x) = u' \cdot e^u$$

Exemple:

a.
$$f(x) = e^{-x} \rightarrow f'(x) = -e^{x}$$

b.
$$f(x) = e^{2x} \rightarrow f'(x) = 2e^{2x}$$

c.
$$f(x) = e^{x^2} \rightarrow f'(x) = 2x e^{x^2}$$

d.
$$f(x) = e^{\frac{1}{x}} \rightarrow f'(x) = -\frac{1}{x^2} e^{\frac{1}{x}}$$

e.
$$f(x) = e^{(3x^2-5x)} \rightarrow f'(x) = (6x-5) e^{(3x^2-5x)}$$

f.
$$f(x) = x \cdot e^x \rightarrow f'(x) = e^x + x \cdot e^x = e^x (1+x)$$

Exercice : Calculer la dérivée de chacune des fonctions suivantes :

1.-)
$$f(x) = e^{3x-7}$$

2.-)
$$g(x) = ln (e^x + 7)$$

3.-)
$$h(x) = \frac{e^x + 2}{e^x - 9}$$

4.-)
$$k(x) = 8lnx - x^2 - 7x + 5$$

Résolution d'équation avec ln

* les équations de type : $A^x = B \implies x = \frac{\ln B}{\ln A}$ Ex : résoudre dans R : $5^x = 20$; $6^x = 1$; $2^{x-1} = 9$; $7^{2x-3} = 5$

Réponse:

$$5^{x} = 20 \implies x = \frac{\ln 20}{\ln 5} = \frac{2,9957}{1,6094} = 1,86 \implies S = \left\{\frac{\ln 20}{\ln 5}\right\}$$

* les équations de type : $\ln u = A \rightarrow u = e^A$

Ex : résoudre dans R : $\ln x = 2$; $\ln(x - 1) = 1$; $\ln(x^2 + 1) = 1$

Réponse:

$$\ln x = 2$$
 $\rightarrow x = e^2 \rightarrow S = \{e^2\}$

$$ln(x-1) = 1 \rightarrow x-1 = e^{1} \rightarrow S = \{e^{1}+1\}$$

$$ln(x + 1) = 1 \rightarrow x + 1 = e^1 \rightarrow S = \{e^1 - 1\}$$

* les équations de type : $a (\ln x)^2 + b (\ln x) + c = 0$

On pose $X = \ln x$ avec $X \in R$ et l'équation devient : a $X^2 + b X + c = \mathbf{0}$

Ex: résoudre dans R:

$$(\ln x)^2 - (\ln x) - 6 = 0$$

$$4(\ln (x+1))^2 - 19 \ln (x+1) - 5$$

$$6(\ln x)^2 - 19 (\ln x) + 10 = 0$$

$$(\ln (x-2))^2 + 4 \ln (x-2) - 5 = 0$$

Réponse :

$$(\ln x)^2 - (\ln x) - 6 = 0$$
 On pose $X = \ln x$ avec $X \in R$ alors: $X^2 - X - 6 = 0$

$$\Delta = (-1)^2 - 4(1)(-6) = 25 = 5^2$$
 $\Rightarrow x_1 = \frac{1-5}{2} = -2; x_2 = \frac{1+5}{2} = 3$

Pour x = -2 on
$$\ln x = -2 \implies x = e^{-2}$$

Pour x = 3 on
$$\ln x = 3 \Rightarrow x = e^3$$
 l'ensemble solution $S = \{e^{-2}; e^3\}$

$$6 (\ln x)^2 - 19 (\ln x) + 10 = 0$$
 On pose $X = \ln x$ avec $X \in R$ alors

$$6 X^2 - 19X + 10 = \mathbf{0}$$

$$\Delta = (-19)^2 - 4(6)(10) = 121 = 11^2$$
 $\rightarrow x_1 = \frac{19-11}{12} = \frac{2}{3}; x_2 = \frac{19+11}{12} = \frac{5}{2}$

Pour
$$x = \frac{2}{3}$$
 on $\ln x = \frac{2}{3} \implies x = e^{\frac{2}{3}}$

Pour
$$x = \frac{5}{2}$$
 on $\ln x = \frac{5}{2} \rightarrow x = e^{\frac{5}{2}}$ l'ensemble solution $S = \left\{e^{\frac{2}{3}}; e^{\frac{5}{2}}\right\}$

$$4(\ln(x+1))^2 - 19\ln(x+1) - 5 = 0$$

On pose
$$X = \ln(x+1)$$
 alors : $4 X^2 - 19X - 5 = 0$ on trouve $x = -\frac{1}{4}$ ou $x = 5$

Pour
$$x = \frac{-1}{4}$$
 on $\ln(x+1) = \frac{-1}{4} \implies x = e^{-\frac{1}{4}} - 1$

Pour
$$x = 5$$
 on $\ln x = 5 \implies x = e^5$ l'ensemble solution $S = \left\{ e^{-\frac{1}{4}} - 1; e^5 \right\}$

$$(\ln(x-2))^2 + 4 \ln(x-2) - 5 = 0$$

On pose
$$X = \ln(x - 2)$$
 alors : $X^2 + 4X - 5 = 0$ on trouve $x = -5$ ou $x = 1$

Pour
$$x = -5$$
 on $\ln(x - 2) = -5 \implies x = e^{-5} + 2$

Pour
$$x = 1$$
 on $\ln(x - 2) = 1 \implies x = e^1 + 2 \implies S = \{e^{-5} + 2; e^1 + 2\}$

Module 5 : Dénombrement et Probabilité

Dénombrement

Le dénombrement consiste à calculer le nombre exact d'un ensemble fini. Cela nous ramène à calculer le cardinal.

Pour un ensemble fini, le cardinal est son nombre d'éléments.

	Dénombrement	
La formule d'Henri P	Poincaré (1854-1912)	
$Card(A \cup B) = card(A \cup B)$	$(A) + card(B) - card(A \cap B)$	
	Sans répétition	$p_n = n!$
Permutations	Tirage: successif de n parmi n sans remise	
	Avec répétition	$p_{n,n_1,n_2,n_3} = \frac{n!}{n_1! n_2! n_3}$
	Tirage : successif de n parmi n avec remise	
	Sans répétition	$A_n^p = \frac{n!}{(n-p)!}$
Arrangements	Tirage : successif de p parmi n	avec $n \ge p$
	sans remise	
	Avec répétition	n^p
	Tirage: successif de p parmi n avec remise	
	Sans répétition	$C_n^p = \frac{n!}{p! (n-p)!}$
Combinaisons	Tirage: simultanée (au	Avec $n \ge p$
	hasard) de p parmi n sans	
	remise	
	Avec répétition	$K_n^p = C_{n+p-1}^p$
		on peut avoir $p > n$.
	Tirage: simultanée (au	
	hasard) de p parmi n avec	
	remise	

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

Exemple: soient les ensembles

$$A = \{a, b, c, d, e, f\}$$
 le cardinal de $A : Card(A) = 6$

$$B = \{2, 7, 8, 9\}$$
 le cardinal de B : Card $(B) = 4$

Exemple:

A « l'ensemble des jours de la semaine » Card(A) = 7

B « l'ensemble des mois de l'année » Card (B) = 7

C « l'ensemble de tous les quartiers de la commune 1 » Card (C) = ...

D « l'ensemble des cartes d'un jeu de belotte » Card (D) = 32

E « l'ensemble des institutions du Mali » Card (E) =

Calcule le Card $(A \cup B)$; card $(A \cap B)$ et *card* (\overline{A})

Intersection ∩ : « les éléments communs entre A et B »

 $A \cap B$: le nombre de réalisation de A et B à la fois.

Union U : « la somme des éléments de A et B sans répétions »

AUB: le nombre de réalisation totale de A ou B.

Négation : « les éléments de E qui ne sont pas dans A »

 \overline{A} : le nombre de réalisation contraire de A.

Exemple : soient l'ensemble $E: E = \{a, b, c, d, e, f, g\}$ et deux sous-ensembles $A = \{a, b, c, d, e\}$ $B = \{d, e, f, g\}$.

Calcule le cardinal de : $A \cup B$; $A \cap B$; A ; B ; \overline{A}

- $A \cup B = E \rightarrow \text{card} (E) = 7$
- $A \cap B = \{ d, e \} \Rightarrow \text{card} (A \cap B) = 7$
- Card (A) = 5 card (B) = 4
- $\overline{A} = \{d, e, f, g\}$ card $(\overline{A}) = 4$

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

1.-) Formule de Poincaré

La formule suivante porte le nom d'**Henri Poincaré** (1854-1912) même si elle est en fait due à **Abraham de Moivre** (1667-1754). On désigne également ce résultat sous l'appellation **principe d'inclusion-exclusion**.

Soient A, B, C des ensembles finis
$Card(A \cup B) = card(A) + card(B) - card(A \cap B)$
$Card(A \cup B \cup C) = card(A) + card(B) + card(C)$
$- card (A \cap B) - card (A \cap C) - card (B \cap C)$
$+ card (A \cap B \cap C)$

Exemple 1 : Formule de Poincaré

Dans une classe de 36 étudiants : (Card (AUBUC) = 36)

• 22 maîtrisent les Comptabilité (A)

• 22 maîtrisent la Géographie (B)

• 18 maîtrisent les Maths (C)

• 10 maîtrisent à la fois la Compta et la Géo

• 9 maîtrisent à la fois la Géo et les maths

• 11 maîtrisent à la fois la Compta et les maths

 \rightarrow card (A) = 22

→ card (B) = 22

→ card (C) = 18

 \rightarrow card $(A \cap B) = 10$

 \rightarrow card (**B** \cap **C**) = 9

 \rightarrow card $(A \cap C) = 11$

Combien d'étudiants maîtrisent les trois matières ? \rightarrow card (A\cap B\cap C)

Solution

Soit A l'ensemble des étudiants qui maîtrisent la Compta

Soit B l'ensemble de ceux qui maîtrisent la Géographie

Soit C l'ensemble de ceux qui maîtrisent les Maths.

On cherche à calculer Card $(A \cap B \cap C)$.

Or les hypothèses signifient que :

<u> </u>	r res my positione significant que t								
Card (AUBUC) = 36	Ccard $(A \cap B) = 10$								
Card (A) = 22	$Card(A \cap B) = 10$								
Card (B) = 22	Card (B∩C) =9								
Card (C) = 18	$Card(A \cap C)=11$								

On utilise alors la formule de Poincaré avec trois ensembles

 $Card(A \cup B \cup C) = card(A) + card(B) + card(C) - card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C)$

On en déduit facilement que card (A\D\C)=4. **Réponse : 4 étudiants**

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

2.-) Principe multiplicatif

Supposons qu'une expérience puisse se décomposer en p sous-expériences ayant respectivement $n_1, n_2,...,n_p$ résultats possibles.

Le nombre total de résultats possibles de l'expérience globale est alors

$$N = n_1 \times n_2 \times ... \times n_p$$

Exemple:

Combien de menus peut-on composer si on a le choix entre 3 entrées, 5 plats et 4 desserts ?

Réponse :

On a ici 3 sous-expériences : le choix de l'entrée, puis le choix du plat et enfin le choix du dessert.

D'après le principe multiplicatif on aura donc $3 \times 5 \times 4$ menus possibles, c'est-à-dire 60.

3.-) Le nombre factoriel n! ou le nombre de Permutation

(tirage successif de p parmi n : sans répétition n !)

La factorielle d'un entier naturel non nul n est notée n! et est définie par $n! = n \times (n-1) \times ... \times 2 \times 1$

Par convention, on pose également 0!=1

Exemple: $5! = 5 \times 4 \times 3 \times 2 \times 1$ $3! = 3 \times 2 \times 1$

Dénombrement : le nombre factoriel sert à calculer le nombre de permutation possible n éléments dans n cases.

Exo 1 : combien de façons peut-on arranger 5 livres dans 5 casiers.

Solution : il s'agit de permuter 5 éléments dans 5 : 5 !; = 5*4*3*2*1 = 120

Exo 2 : combien de façons peut-on former de mots avec le mot: CASE. **Solution :** il s'agit de permuter 4 éléments dans 4:4!; =4*3*2*1=24

Exo 3 : combien de façons peut-on former un comité de 10 membres parmi les 6 hommes et 4 femmes.

Solution : il s'agit de permuter 10 éléments dans 10 : 10 !; = 10*9*8*7*6*5*4*3*2*1 = ...

Ex o 4 : Dans une classe de terminale TSS il y a 24 élèves. Ils doivent tous s'inscrire à un concours de journalisme. Pour cela, il faut établir une liste d'inscription. Combien il y a t-il de manières de constituer cette liste?

Rép : Le nombre de façon pour construire cette liste correspond au nombre de permutation des 24 élèves, soit : $24 ! = 24 \times 23 \times ... \times 21$

Le nombre de Permutation

Soit E un ensemble fini de cardinal n.

Une permutation de E est une suite ordonnée de tous les éléments de E.

- Les permutations sans répétitions n!
- Les permutations avec répétitions $\frac{n!}{n_1! n_2! n_3! \dots n_k!}$

Exemple: Permutations sans répétitions

De combien de façons peut-on placer un groupe de 5 personnes sur un banc?

Réponse : 5! = 120

Exemple: Permutations avec répétitions

Quel est le nombre d'anagrammes du mot "PAPA" ?

Réponse : Les permutations avec répétitions $\frac{n!}{n_1! n_2! n_3! \dots n_{k!}}$

$$\frac{n!}{n_1! n_2!} = \frac{4!}{2! \, 2!} = 6$$

Le mot "PAPA" \rightarrow n = card (E) = 4

- → P est répété 2 fois
- → A est répété 2 fois

Exemple: Permutations avec répétitions

Quel est le nombre d'anagrammes du mot "BEMBA" ?

Réponse : Les permutations avec répétitions $\frac{n!}{n_1! n_2! n_3! \dots n_k!}$

$$\frac{n!}{n_1!} = \frac{4!}{2!1!} = 12$$

Le mot "BEMBA" \rightarrow n = card (E) = 5

→ B est répété 2 fois

Exemple: Permutations avec répétitions

Quel est le nombre d'anagrammes du mot "RATTRAPAGE" ?

Réponse : Les permutations avec répétitions $\frac{n!}{n_1! n_2! n_3! \dots n_k!}$

$$\frac{n!}{n_1! \, n_2! \, n_3! \, \dots \, n_k!} = \frac{10!}{3! \, 2! \, 2!} = 151 \, 200$$

Le mot "RATTRAPAGE" \rightarrow n = card (E) = 10

- → R est répété 2 fois
- → A est répété 3 fois
- → T est répété 2 fois

4.-) Arrangements (tirage successif de p parmi n)

(sans répétition A_n^p) ou (avec répétition n^p)

Un arrangement de p éléments de E est une suite ordonnée de p éléments de E.

- Les arrangements avec répétitions n^p
- Les arrangements sans répétitions A_n^p

Arrangements avec répétitions

Un arrangement avec répétitions de p éléments de E est un arrangement de p éléments de E non nécessairement distincts.

Exemple 1 : Arrangements avec répétitions

Combien de numéros de téléphone à 8 chiffres peut-on former ?

Réponse :

Il s'agit clairement d'une situation d'arrangements avec répétitions puisque l'ordre des chiffres importe et qu'un numéro de téléphone peut comporter plusieurs fois le même chiffre. \Rightarrow E={0,1,...,9}, et on a n = card (E) = 10.

On s'intéresse aux arrangements avec répétitions de p = 8 éléments de E.

D'après le résultat ci-dessus, il y en a 10⁸.

Arrangements sans répétitions

Un arrangement sans répétitions de p éléments de E est un arrangement de p éléments de E tous distincts.

 $A_n^p = \frac{n!}{(n-p)!}$ est le nombre de façon de tirer successivement sans remise p éléments parmi

n. **Retenons bien :**
$$A_n^n = n!$$
; $A_n^1 = n$; $A_n^0 = 1$

Exemple 1 : A l'occasion d'une compétition sportive regroupant 18 athlètes, on attribue une médaille d'or, une d'argent et une de bronze. Combien il y a t-il de distributions possibles (avant la compétition).

Réponse : Le nombre de distributions possibles correspond au nombre d'arrangement de 3 éléments parmi 18, soit :

$$A_{18}^3 = \frac{18!}{(18-3)!} = 4.896$$
 distribuions possibles.

Exemple: Arrangements sans répétitions

Quel est le nombre de mots comportant 5 lettres distinctes ? (sans se préoccuper du sens des mots).

Réponse :
$$A_{26}^5 = \frac{26!}{(26-5)!} = 7893600$$

5.-) Combinaisons (tirage simultané ou au hasard)

(sans répétition C_n^p) ou (avec répétition $K_n^p = C_{n+p-1}^p$)

Soit E un ensemble fini de cardinal n.

Une combinaison de p éléments de E est un sous-ensemble de p éléments de E. Il est fondamental de bien comprendre que dans la notion de combinaison l'ordre des éléments n'importe pas.

Le nombre de combinaisons de p éléments de E se note $\binom{n}{p}$ (ou parfois C_n^p et est égal

$$\hat{a} \frac{n!}{p!(n-p)!}$$

Exemple: Combinaisons

Au poker combien de mains existe-t-il?

(une main étant un tirage de 5 cartes et 52 cartes)

Réponse :
$$C_n^p = \frac{n!}{p!(n-p)!} \rightarrow C_{52}^5 = \frac{52!}{5!(52-5)!}$$

Sujets d'examen au BAC sur le dénombrement

- a.-) De combien de manières différentes peut-on placer 5 personnes l'une à côté de l'autre ? **Réponse : c'est le nombre de permutation sans répétition 5 ! = 120**
- b.-) Combien de nombre peut-on former en utilisant exactement une fois chacun des chiffres de 1 à 6 ?

Réponse: 6!

c.-) Combien de mots différents peut-on écrire en permutant les lettres des mots DOUDOU?

Réponse : 2 lettres de D 2 lettres de O et 2 lettres de U

$$P_{2|2|2|} = \frac{6!}{2|2|2|} = \frac{720}{8} = 90$$

d.-) Combien de mots différents peut-on écrire en permutant les lettres des mots KARIM?

Réponse : 1 lettre de K ; 1 lettre de A et 1 lettre de R

$$P_{1|\ 1|\ 1|\ 1|\ 1|\ 1|} = \frac{5!}{1!\ 1!\ 1!} = \frac{120}{1} = 90$$

e-) combien de façons peut-on arranger 5 livres dans 5 casiers.

Solution : il s'agit de permuter 5 éléments dans 5:5!; =5*4*3*2*1=120

f-) combien de façons peut-on former de mots avec le mot: CASE.

Solution : il s'agit de permuter 4 éléments dans 4:4!; =4*3*2*1=24

g-) De combien de façons peut-on classer (sans ex aequo) les 40 étudiants d'un groupe de TD?

Solution: C'est le nombre de permutations de 40 éléments donc 40!

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

h-) De combien de façons peut-on classer (sans ex aequo) les 18 chevaux au départ d'un grand prix?

Solution : C'est le nombre de permutations de 18 éléments donc 18!

h-) De combien de façons peut-on classer (sans ex aequo) les 3 chevaux de tête d'un grand prix?

Solution : C'est le nombre de permutations de 3 éléments donc 3!

1.-) Combien il y a-t-il de listes ordonnées de 4 personnes prises parmi 20, si on considère qu'il n'y a pas d'exæquo?

Réponse :
$$A_{20}^4 = \frac{20!}{16!} = 20 * 19 * 18 * 17 = 116 280$$

2.-)

Dans une entreprise 6 postes de travail présentant des caractéristiques identiques sont à pourvoir et font l'objet d'une offre d'emploi pour 10 candidats dont 6 femmes et 4 hommes. Combien de sélection pourra opérer le chef de personnel pour ces 6 postes s'il veut embaucher:

- **a.-**) exactement deux hommes.
- **b.-**) au plus deux hommes.
- **c.-**) au moins deux hommes.

Réponses:

Cas des sélections non ordonnées le tirage est au hasard C_n^p

a.-) exactement deux hommes

On sélection 2 hommes parmi les 4 hommes $\Rightarrow C_4^2$ et On sélection 4 femmes parmi les 6 hommes $\Rightarrow C_6^4$

$$C_4^2 * C_6^4 = \dots$$

b.-) au plus deux hommes → veut dire 2 H ou 1 H ou 0 homme

2 H parmi 4 H et 4 F parmi 6 F
$$\rightarrow$$
 $C_4^2 * C_6^4 =$ ou

1 H parmi 4 H et 5 F parmi 6 F
$$\rightarrow C_4^1 * C_6^5 = 24$$
 ou

2 H parmi 4 H et 4 F parmi 6 F
$$\rightarrow$$
 $C_4^2 * C_6^4 =$ ou 1 H parmi 4 H et 5 F parmi 6 F \rightarrow $C_4^1 * C_6^5 =$ 24 ou 0 H parmi 4 H et 6 F parmi 6 F \rightarrow $C_4^0 * C_6^6 =$ 1 ou

Solution =
$$C_4^2 * C_6^4 + C_4^1 * C_6^5 + C_4^0 * C_6^6 = \dots$$

c.-) au moins deux hommes → 2 H ou 3 H ou 4 H

2 H parmi 4 H et 4 F parmi 6 F
$$\Rightarrow$$
 $C_4^2 * C_6^4 = \dots$ ou

2 H parmi 4 H et 4 F parmi 6 F
$$\rightarrow$$
 $C_4^2 * C_6^4 = ...$ ou 3 H parmi 4 H et 3 F parmi 6 F \rightarrow $C_4^3 * C_6^3 = ...$ ou

4 H parmi 4 H et 2 F parmi 6 F
$$\rightarrow C_4^4 * C_6^2 = ...$$

$$C_4^2 * C_6^4 + C_4^3 * C_6^3 + C_4^4 * C_6^2 =$$

Probabilité

Probabilité d'un événement A est P (A) est l'ensemble des cas favorables sur l'ensemble des cas possibles.

$$P(A) = \frac{CardA}{Cardr} = \frac{l'ensemble \ des \ cas \ favorables}{l'ensemble \ des \ cas \ possibles}$$

Si A	se réalise,	on a $P(A)$;	Si A ne	se réalise p	as, on a P ($\overline{A}) = 1 - P(A)$
------	-------------	---------------	---------	--------------	--------------	----------------------------

Si A et B se réalisent ensemble $P(A \cap B)$

Si A ou B se réalise ensemble
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Si A se réalise et non B $P(A \cap \overline{B}) = P(A) - P(A \cap B)$

Si A et B ne se réalisent pas $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$

Formules

$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$P(\overline{A \cap B}) = 1 - P(A \cap B)$
$P(\bar{A}) = 1 - P(A)$	$P(\bar{A} \cap B) = P(B) - P(A \cap B)$
$P(\overline{A \cup B}) = 1 - P(A \cup B)$	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

Exercice de réchauffement 1 : Probabilité

Soit un ensemble $E = \{a, b, c, d, e, f, g\}$ des sous-ensembles :

$$A = \{a, b, c, d, e\}$$
; $B = \{d, e, f, g\}$

Calculer : la probabilité des évènements:

A se realise	Seulement A se réalise
B se realise	Seulement B se réalise
A et B se réalisent	• A ou B se realise
•	A et B ne se réalisent pas

Réponse:

A se réalise :
$$Prob(A) = \frac{Cas fovorable de A(cardinal de A)}{Cas possible (cardinal de E)} = \frac{5}{7}$$

A se réalise :
$$Prob(A) = \frac{Cas \ fovorable \ de \ A \ (cardinal \ de \ A)}{Cas \ possible \ (cardinal \ de \ B)} = \frac{5}{7}$$
B se réalise : $Prob(B) = \frac{Cas \ fovorable \ de \ B \ (cardinal \ de \ B)}{Cas \ possible \ (cardinal \ de \ B)} = \frac{4}{7}$

A et B se réalisent,
$$\cap B = \{e; f\} : P(A \cap B) = \frac{2}{7}$$

A ou B se realise,
$$\cup B = E : P(A \cup B) = \frac{7}{7} = 1$$

A et B ne se réalisent pas,
$$P(\bar{A} \cap \bar{B}) = P(\bar{A} \cup \bar{B}) = 1 - P(\bar{A} \cup \bar{B}) = 1 - 1 = 0$$

Seulement A se realise,
$$P(A \cap \overline{B}) = P(A) - P(A \cap B) = \frac{5}{7} - \frac{2}{7} = \frac{3}{7}$$

Seulement B se realise,
$$P(B \cap \overline{A}) = P(B) - P(A \cap B) = \frac{4}{7} - \frac{2}{7} = \frac{2}{7}$$

* Si A et B sont indépendants :
$$P(A \cap B) = P(A) \times P(B)$$

* Si A et B sont incompatibles
$$(A \cap B = \phi)$$
: $P(A \cap B) = 0$

Cahier du bachelier ** Maths - TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33

Exercice 1:

On prélève cinq œufs dans un lot de dix œufs dont quatre proviennent d'une poule et d'un coq de race F et six d'une poule et d'un coq de race G. Les œufs d'une race sont indiscernables des œufs de l'autre race.

- 1-/ Trouver le nombre de façons possibles de prélever cinq œufs parmi les dix (2pts)
- 2-/ Calculer la probabilité des évènements suivants :

A: « Il y a un seul œuf de race F parmi les cinq œufs prélevés »

B: « Le prélèvement contient exactement trois œufs de race F »

Réponse 1

(4 oeufs provenant de la race F Au total 10 œufs 6 oeufs provenant de la race G

On en prélève 5

1-/ Le nombre de façons possibles de prélever cinq œufs parmi les dix est :

$$C_{10}^5 = 252.$$

2-/ Calcul de probabilités :

$$card(A) = C_4^1 \times C_6^4$$
 c'est-à-dire $card(A) = 60$.

$$P(A) = \frac{60}{252} = 0.23$$

$$card(B) = C_4^3 \times C_6^2$$
 c'est-à-dire $card(B) = 60$.
$$P(B) = \frac{60}{252} = 0.23$$

Exercice 2:

Une urne contient 30 boules numérotés de 1 à 30

1-/ Les numéros qui sont multiples de 3 et de 5 sont : {15 ; 30}

2-/ Calculons:

a-/ la probabilité que le numéro de la boule tirée soit multiple de 3 et de 5 est : $P_1 = \frac{2}{30} =$

b-/ la probabilité que le numéro de la boule tirée soit multiple de 3 ou de 5 est : les numéros qui sont multiples de 3 ou de 5 sont :

$$\{3; 5; 6; 9; 10; 12; 15; 18; 20; 21; 24; 25; 27; 30\}$$
 $P_2 = \frac{14}{30} = \frac{7}{15}$

3-/ Calculons la probabilité d'obtenir au moins une fois un numéro multiple de 3 et de 5 : $P_3 = \frac{3(2^1 \times 28^2 + 2^2 \times 28^1) + 2^3 \times 28^0}{30^3} = \frac{5048}{27000} = \frac{631}{3375}$

$$P_3 = \frac{3(2^1 \times 28^2 + 2^2 \times 28^1) + 2^3 \times 28^0}{30^3} = \frac{5048}{27000} = \frac{631}{3375}$$

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33 Problème et solution 1 : Comprendre le dénombrement / probabilité

Une boite contient 12 gâteaux emballés séparément dans 12 paquets identiques. 5 de ces gâteaux sont parfumés à la vanille ; 4 autres au chocolat et les 3 derniers à la banane.

Partie A:

Un enfant choisit simultanément 3 gâteaux :

1.-/ Combien y a-t-il de choix possible?

Réponse :
$$C_{12}^3 = \frac{12!}{3!9!} = 220$$

2.-/ Quelle est la probabilité qu'il ait choisi :
$$Prob = \frac{Cas \ Favorable}{cas \ possible}$$

a.-/ Un gâteau de chaque sorte?

Rép: cas favorable =
$$C_5^1 \times C_4^1 \times C_3^1 = 5 * 4 * 3 = 60$$
 Prob = $\frac{60}{220}$

b.-/ 3 gâteux identiques?

Rép: Cas favorable =
$$C_5^3 + C_4^3 + C_3^3 = 10 + 4 + 1 = 15 \Rightarrow Prob = \frac{15}{220}$$

c.-/ Exactement deux variétés de gâteux?

Rép: 2 V et 1 C ou 2V et 1B ou 2C et 1B ou 1C et 1 V ou 2B et 1V ou 2B et 1C

$$Cas fav = C_5^2 x C_4^1 + C_5^2 x C_3^1 + C_4^2 x C_3^1 + C_5^1 x C_4^2 + C_5^1 x C_3^2 + C_4^1 x C_3^2 = \dots$$

$$Prob = \frac{1}{220}$$

Partie B:

S'il mangeait un gâteau le matin, 1 à midi et 1 le soir :

1.-/ Combien aurait-il eut de choix possible?

Rép: Cas possible:
$$A_{12}^3 = 1320$$

2.-/ Quelle aurait été la probabilité de prendre :

a.-/ Un gâteau à la vanille le matin un gâteau au chocolat à midi, un gâteau à la banane le soir ? 61 68 41 39

29

Rép: Cas favorable =
$$A_5^1 x A_4^1 x A_3^1 = 60 \implies Prob = \frac{60}{220}$$

b.-/ Un gâteau de chaque sorte?

Rép: Cas favorable =
$$A_5^1 \times A_4^1 \times A_3^1 = 60 \implies Prob = \frac{60}{220}$$

c.-/ Deux gâteaux à la banane et un au chocolat?

Rép: Cas favorable =
$$A_5^0 x A_4^2 x A_3^1 = 18 \implies Prob = \frac{18}{220}$$

Module 7: Statistique

Définitions

- La **statistique** est la science qui étudie les chiffres.
- La **population statistique** est un ensemble étudié concernant un phénomène donné par la statistique. Exemple: l'ensemble des élèves la 12ème TLL.
- Un élément de l'ensemble étudié s'appelle **unité statistique** ou individu. Exemple: l'ensemble des maliens l'unité statistique un malien.
- Chaque unité statistique peut être étudiée suivant un ou plusieurs caractères (qualitatif ou quantitatif).
- Caractère qualitatif: les modalités du caractère ne sont pas mesurables. Exemple: sexe, ethnie, religion, nationalité, race, couleur des cheveux.
- Caractère quantitatif ou variable statistique: les modalités du caractère sont mesurable ou repérables exemple: le nombre d'enfant à charge, taille, âge, température ...
- Variable statistique discrète: elle est discrète lorsque les valeurs sont isolées (des nombres entiers) exemples: nombre d'enfants, nombre de parcelles.
- Variable statistique continue: elle est continue lorsque les valeurs sont comprises entre deux valeurs distinctes (des nombres décimaux) exemple: taille, poids ...

I.- L'analyse des résultats statistiques à un seul caractère

• Fréquence
$$f_i = \frac{Effectif \ n_i}{Effectif \ Total \ N} \ x \ 100 \implies \sum f_i = 100\%$$

• Le mode ou le dominant (caractéristique de position) Mo

C'est la valeur du caractère qui correspond à la plus grande fréquence.

La Médiane

La médiane est la valeur du caractère qui correspond à l'unité statistique placée au milieu de la population statistique.

Cas des variables statistiques continues

La médiane est la valeur du caractère pour laquelle la courbe cumulative prend la valeur (1/2) :

La médiane :
$$M\acute{e} = x_i + \frac{(x_{i+1} - x_i)(\frac{1}{2} - f(x_i))}{f(x_{i+1}) - f(x_i)}$$

• Les Quantiles et déciles (caractéristique de position)

Les quantiles c'est la division d'une distribution statistique en quatre parties égales :

Q₁, (¼); Q₂, (½); Q₃ (¾)

1er quartile::
$$Q1 = x_i + \frac{(x_{i+1} - x_i)(\frac{1}{4} - f(x_i))}{f(x_{i+1}) - f(x_i)}$$

3ème Quartile:: $Q3 = x_i + \frac{(x_{i+1} - x_i)(\frac{3}{4} - f(x_i))}{f(x_{i+1}) - f(x_i)}$

• La moyenne arithmétique \overline{X}

Soient les valeurs
$$x_1, x_2, x_3, \dots, x_n$$
 $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{N} = \frac{\sum x_i}{N}$
Retenons bien ceci: $\bar{x}_1 * f_1 + \bar{x}_2 * f_2 = \bar{X}$ et $f_1 + f_2 = 1$

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33 Application 1

Les résultats de l'enquête sur la note des élèves d'une classe sont :

12	13	8	9	10	15	16	17	10	7
4	10	3	15	10	7	9	10	11	9

- 1.-/ Quel est l'effectif total de la classe ?
- **2.-/** quelle est la note dominante ?
- 3.-/ Quelle est la note médiane ?
- **4.-/** Quelle la moyenne de la classe ?

Application 2

Les notes obtenues par les candidats présélectionnés pour l'oral :

15	5	6	14	10	7	11	7	4	7	6

- 1.-/ Quel est l'effectif total des candidats ?
- 2.-/ quelle est la note dominante ?
- 3.-/ Quelle est la note médiane ?
- **4.-/** Quelle la moyenne ?

Application 3

Dans une entreprise on compte :

- 300 employés hommes qui touchent ensemble un salaire de 40 800 000 F par mois
- 200 employés femmes qui touchent ensemble un salaire de 24 000 000 F par mois
- 1.-/ Quel est le salaire mensuel moyen des hommes ? \bar{x}_H
- **2.-/** Quel est le salaire mensuel moyen des femmes ? \bar{x}_F
- 3.-/ Quel est le salaire mensuel moyen des employés ? \bar{X}
- **4.-**/ Calculer le % d'hommes et de femmes ? f_H et f_F
- **5.-**/ Vérifier que $\bar{x}_H * f_H + \bar{x}_F * f_F = \bar{X}$ et $f_H + f_F = 1$

Application 4

Dans une société de gardiennage, le salaire mensuel moyen est de 18.000 F. Les salaires mensuels moyens des employés d'hommes et des employés femmes étant respectivement 20.000 F et 12.000 F. Calculer le % d'hommes et de femmes de société.

Si cette société emploie 20 personnes, déterminer le nombre d'homme et de femmes.

Application 5

On donne la répartition des élèves suivants, le nombre de frères

<u></u>			,			
Nombre de frères	1	2	3	4	5	Total
Effectifs	10	5	15	7	8	45

TAF:

- 1) Quelle est la nature de la variable statistique?
- 2) Déterminer le mode et la médiane

I.- L'analyse des résultats statistiques à deux caractères

Soit la série

Période	1	2	3	4	5	6	•••	n
X	X_1	X_2	X_3	X_4	X_5	X_6	••••	X _n
Υ	Y ₁	Y ₂	Y_3	Y_4	Y_5	Y_6	••••	Yn

1.-) Calcule la moyenne \overline{X} et \overline{Y} en déduire le point moyen G

$$\bar{X} = \frac{\sum X}{N}$$
 et $\bar{Y} = \frac{\sum Y}{N}$ le point moyen $G \rightarrow G(\bar{X}; \bar{Y})$

2.-) Calcule la variance V(X)

$$V(X) = \frac{\sum X_i^2}{N} - (\bar{x})^2$$

3.-) Calcule la covariance Cov (X, Y)

$$Cov(X,Y) = \frac{\sum X*Y}{N} - (\bar{X})*(\bar{Y})$$

4.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MCO.

$$Y = aX + b$$
 avec $a = \frac{Cov(X,Y)}{V(X)}$ ou $a = \frac{\sum X Y - n \, \overline{X} * \overline{Y}}{\sum X^2 - n \, \overline{X}^2}$ et $b = \overline{Y} - a \, \overline{X}$

5.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MAYER Divisons la série en deux parties égales (si impaire la $1^{\text{ère}}$ augmente de 1)

1 ^{ère} série					2 ^{ème} série						
X						X					
Y						Y					
\bar{X}_1 e	t	$\bar{Y}_1 \rightarrow C$	$\overline{G_1(\bar{X}_1;}$	\overline{Y}_1)		\bar{X}_2	et	$\bar{Y}_2 \rightarrow 0$	$G_2(\bar{X}_2;$	\overline{Y}_2)	
Y = aX	X + b	$\rightarrow a \bar{X}$	$\frac{1}{1} + b$	$= \overline{Y}_1$	$Y = aX + b \rightarrow a \bar{X}_2 + b = \bar{Y}_2$						
				$\frac{\overline{b}_1 + b}{b} = \overline{b}$ $\frac{\overline{b}_2 + b}{b} = \overline{b}$	\overline{Y}_1					-	
T 24	4:	1 - 1 - 1	:4- 12-:	natamant.		N / A X/	ED.	$V - \sim V$	1 %		

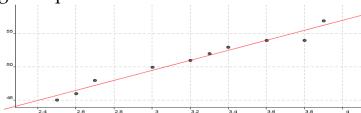
L'équation de la droite d'ajustement par MAYER : Y = aX + b

Nuage des points (exemple)

Dans une maternité on a relevé le poids et la taille de 10 nouveaux nés et les résultats sont consignés dans le tableau suivant :

Enfant	1	2	3	4	5	6	7	8	9	10
Poids en kg	2,5	2,6	2,7	3	3,2	3,3	3,4	3,6	3,8	3,9
Taille en cm	45	46	48	50	51	52	53	54	54	57

Représente les nuages de points.



Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33 Exemple 1 : soit la série

X	1	2	3	4	5	6	7	8
Y	5	8	9	12	14	16	18	20

- 1.-) Calcule la moyenne \bar{X} et \bar{Y} en déduire le point moyen $G(\bar{X}; \bar{Y})$
- 2.-) Calcule la variance V(X)
- 3.-) Calcule la covariance Cov (X, Y)
- 4.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MCO.

En déduire que le point moyen G \rightarrow G $(\bar{X}; \bar{Y})$ vérifie la droite

5.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MAYER.

En déduire que le point moyen G \rightarrow G $(\bar{X}; \bar{Y})$ vérifie la droite

Solution : Calcule des sommes $\sum X$; $\sum Y$; $\sum X Y$

X	1	2	3	4	5	6	7	8	$\sum X = 36$
Y	5	8	9	12	14	16	18	20	$\sum Y = 102$
\mathbf{X}^2	1	4	9	16	25	36	49	64	$\sum X^2 = 204$
X*Y	5	16	27	48	70	96	126	160	$\sum X * Y = 548$

1.-) Calcule la moyenne \overline{X} et \overline{Y} en déduire le point moyen G

$$\bar{X} = \frac{\sum X}{N} \rightarrow \bar{x} = \frac{\sum X}{N} = \frac{36}{8} = 4,5$$
 $\bar{Y} = \frac{\sum Y}{N} \rightarrow \bar{x} = \frac{\sum Y}{N} = \frac{102}{8} = 12,75$

en déduire le point moyen $G \rightarrow G(\bar{X}; \bar{Y}) \rightarrow G(4,5; 12,75)$

2.-) Calcule la variance V(X)

$$V(X) = \frac{\sum X_i^2}{N} - (\bar{x})^2 \rightarrow V(X) = \frac{204}{8} - (4.5)^2 = 5.25$$

3.-) Calcule la covariance Cov (X, Y)

$$Cov(X,Y) = \frac{\sum X*Y}{N} - (\bar{X})*(\bar{Y})$$

$$Cov(X,Y) = \frac{548}{8} - (4,5)*(12,75) = \frac{548}{8} - 57,375 = 11,125$$

4.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MCO.

$$Y = aX + b$$
 avec $a = \frac{Cov(X,Y)}{V(X)}$ ou $a = \frac{\sum X Y - n \bar{X} * \bar{Y}}{\sum X^2 - n \bar{X}^2}$ et $b = \bar{Y} - a \bar{X}$
 $a = \frac{Cov(X,Y)}{V(X)} = \frac{11.125}{5.25} = 2,12$ et $b = \bar{Y} - a \bar{X} = 12,75 - (2,12)*(4,5) = 3,21$.

L'équation de la droite d'ajustement par la MCO : Y = 2,12 X + 3,21Le point moyen $G \rightarrow G(\bar{X}; \bar{Y}) \rightarrow G(4,5; 12,75)$ vérifie-t-il la droite ? Y = 2,12 X + 3,21 = 2,12 * 4,5 + 3,21 = 12,75

Cahier du bachelier ** Maths – TSS *** Bemba B TRAORE 69 50 23 20 / 76 43 95 33 5.-) Détermine la droite d'ajustement Y = aX + b par la méthode de MAYER Divisons la série en deux parties égales (si impaire la $1^{\text{ère}}$ augmente de 1)

1ère séi	rie					2 ^{ème} s	érie						
X	1	2	3	4		X 5 6 7 8							
Y	5	8	9	12		Y	14	16	18	20			
$\bar{X}_1 = \frac{1}{2}$	$\frac{0}{4} = \frac{1}{4}$	\bar{Y}_1	$=\frac{34}{4}$	= 8,5		$\bar{X}_2 = \frac{26}{4} = 6.5$ $\bar{Y}_2 = \frac{68}{4} = 17$							
$G_1(\bar{X}_1)$	$G_1(\bar{X}_1; \bar{Y}_1) \rightarrow G(2,5; 8,5)$						$G_2(\bar{X}_2; \bar{Y}_2) \rightarrow G(6,5; 17)$						
		b → 2,5 d				$y = aX + b \implies 6.5 \ a + b = 17$							
Déterminons a et b \Rightarrow $\begin{cases} 2.5 \ a + b = 8.5 \\ 6.5 \ a + b = 17 \end{cases}$ o trouve a =2,125 et b = 3,1875													
L'équa	ation	de la dro	ite d'a	justement	par	MAY	ER:	Y = 2,12	25 X +	3,1875			

Le point moyen G
$$\rightarrow$$
 G (\bar{X} ; \bar{Y}) \rightarrow G (4,5; 12,75) vérifie-t-il la droite ? $Y = 2,125 \times 4,1875 = 2,125 \times 4,5 + 3,1875 = 12,75$

Exemple 2:

Le tableau suivant donne les dépenses en millions de FCFA des ménages en produits informatiques (matériels, logiciels, réparations) de 1990 à 1999.

Années	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Rang xi	0	1	2	3	4	5	6	7	8	9
Dépenses yi	398	451	423	501	673	956	1077	1285	1427	1490

Déterminer un ajustement affine de la série par la méthode de MAYER. Déterminer un ajustement affine de la série par la méthode de MCO.

Exemple 3:

Sur un échantillonnage et sur une courte durée, les relevés ont donné les résultats suivants

Âge ti (en nombre de semaines)	1	2	3	4	5	6	7	8
Taille <i>yi</i> (exprimée en millimètre)	10	18	25	33	40	41	50	53

- 1-/ Soit G le point moyen du nuage de points associé à ce tableau. On considère la droite D passant par G et de coefficient directeur 6,14. Déterminer une équation de la droite D.
- **2-/** On considère que la fonction affine représentée par la droite D traduit l'évolution de la taille en fonction de l'âge des crevettes avec les unités considérées. Déterminer selon ce modèle la taille d'une crevette de 12 semaines.
- **3-/** On estime que l'espérance de vie d'une crevette *Trachypenaeus* en haute mer est de 3 années. Calculer, avec le modèle retenu, la taille atteinte au bout de 3 ans. .

Enoncés des sujets d'examens au BAC – TSS – 2018

Exercice 1:

On considère le polynôme $P(x) = x^3 + 3x^2 - 4x - 12$

- 1.-) a.-) Calcule P(-2)
 - b.-) Compare P(x) et (x+3)(x-2)(x+2).
 - c.-) Résous dans \mathbb{R} l'équation P(x) = 0
- 2.-) utilise la première question pour résoudre dans \mathbb{R} , les équations suivantes:
- a.-) $(\ln x)^3 + 3(\ln x)^2 4 \ln x 12 = 0$ (In désigne le logarithme népérien).
- b.-) $e^{3x} + 3e^{2x} 4e^x 12 = 0$.

Exercice 2

1.-) Calcule la dérivée des fonctions suivantes:

$$f(x) = x^3 - 2x^2 + 5x - 4$$
 $g(x) = x - \frac{1}{x}$
 $h(x) = 3 + x \ln x$ $k(x) = e^{3x} - 5x + 3$

2.-) Dans chacun des cas suivants, trouve une primitive de la fonction f définie sur \mathbb{R} .

a.-
$$f(x) = x^2 + \frac{1}{x^2}$$

b.- $f(x) = 3x^2 + 2x - 1$
c.-) $f(x) = \frac{1}{5}x^3 - \frac{1}{3}x^2 + \frac{1}{4}x$
d.-) .- $f(x) = e^x + x^2 + 3$

Problème

Soit la fonction numérique f définie par $f(x) = \frac{x^2 - x - 1}{x + 1}$

- 1. Détermine l'ensemble de définition de f.
- 2. Calcule les limites de f aux bornes de son ensemble de définition.
- 3. Montre qu'il existe trois réels a, b et c telle que $f(x) = ax + b + \frac{c}{x+1}$
- 4. Montre que la droite (D) d'équation y = x-2 est asymptote à (Cf).
- 5. Calcule la dérivée 'f de f puis étudie son signe.
- 6. Dresse le tableau de variation de f.
- 7. Trace la courbe (Cf) dans un repère orthonormé (O; i; j).

Corrigés des sujets d'examens au BAC – TSS – 2018

Exercice 1 TSS 2018 Corrigé : $P(x) = x^3 + 3x^2 - 4x - 12$

1.-) a.-)
$$P(-2) = -8 + 12 + 8 - 12 = 0$$

b.-) Compare P(x) et (x+3)(x-2)(x+2).

Je développe (x+3) (x-2) (x+2) = $x^3 + 3x^2 - 4x - 12$

P(x) = (x+3)(x-2)(x+2).

c.-)
$$P(x) = 0 \rightarrow (x+3)(x-2)(x+2) = 0 \rightarrow x = -3 \text{ ou } x = 2 \text{ ou } x = -2$$

 $S = \{-3; -2; 2\}$

2.-) résoudre dans \mathbb{R} , les équations suivantes:

a.-)
$$(\ln x)^3 + 3(\ln x)^2 - 4 \ln x - 12 = 0$$

On pose
$$X = \ln x$$
 définie $x > 0$ et $X \in R \implies X^3 + 3X^2 - 4X - 12 = 0$
 $\ln x = -3 \implies x = e^{-3}$ $\ln x = -2 \implies x = e^{-2}$ $\ln x = 2 \implies x = e^2$

Rappels:
$$\ln X = A \implies X = e^A$$
 ou $e^X = A \implies X = \ln A$

$$S = \{e^{-3}; e^{-2}; e^2\}$$

b.-)
$$e^{3x} + 3e^{2x} - 4e^x - 12 = 0$$
 On pose $X = e^x$ définie $x \in R$ et $X > 0$

→
$$X^3 + 3X^2 - 4X - 12 = 0$$
 → on trouve $X = e^x = 2$ → $x = \ln 2$ → $S = \{\ln 2\}$

Exercice 2 TSS 2018 Corrigé

1.-) la dérivée des fonctions suivantes:

$$f(x) = x^3 - 2x^2 + 5x - 4$$
 \Rightarrow $f'(x) = 3x^2 - 4x + 5$

$$g(x) = x - \frac{1}{x}$$
 \Rightarrow $g'(x) = 1 + \frac{1}{x^2}$

$$h(x) = 3 + x \ln x$$
 $\Rightarrow h'(x) = 1 \ln x + \frac{1}{x} * x = \ln x + 1$

$$k(x) = e^{3x} - 5x + 3$$
 \Rightarrow $k'(x) = 3e^{\frac{x}{3x}} - 5$

Rappels:

Fonctions	Dérivée	Fonctions	Dérivée
a	0	ln x	1
			$\frac{\overline{x}}{x}$
ax	a	e^{ax}	a e ^{ax}
a x ⁿ	a.x ⁿ⁻¹	u.v	u'v+v'u
1	$-\frac{1}{2}$		
\boldsymbol{x}	x^2		

2.-) Une primitive de la fonction f définie sur \mathbb{R} .

a.-
$$f(x) = x^2 + \frac{1}{x^2}$$
 \rightarrow $F(x) = \frac{1}{3}x^3 - \frac{1}{x} + K$

b.-
$$f(x) = 3x^2 + 2x - 1 \implies F(x) = x^3 + x^2 - x + k$$

c.-)
$$f(x) = \frac{1}{5}x^3 - \frac{1}{3}x^2 + \frac{1}{4}x \implies F(x) = \frac{1}{20}x^4 - \frac{1}{9}x^3 + \frac{1}{8}x^2 + k$$

d.-)
$$-f(x) = e^x + x^2 + 3$$
 $\Rightarrow F(x) = e^x + \frac{1}{3}x^3 + 3x + k$

Rappels:

Fonctions	Primitive	Fonctions	Primitive
A	ax	$\frac{1}{x^2}$	$-\frac{1}{x}$
$a x^n$	$\frac{1}{n+1} x^{n+1}$	$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$
e^{ax}	$\frac{1}{a} e^{ax}$	$\frac{1}{x}$	$\ln x$

Problème TSS 2018 Corrigé \rightarrow $f(x) = \frac{x^2 - x - 1}{x + 1}$

1.-) l'ensemble de définition de f $\rightarrow x + 1 \neq 0 \rightarrow x \neq -1$

$$Df =]-\infty; -1[\cup]-1; +\infty[$$

2. les limites de f aux bornes de son ensemble de définition.

$$\lim_{x \to -\infty}^{Limite} f(x) = \frac{x^2}{x} = x = -\infty$$

$$\lim_{x \to -1^+} f(x) = \frac{+1}{0^+} = +\infty$$

$$\lim_{x \to -1^{-}} f(x) = \frac{1}{0^{-}} = -\infty$$

Limite
$$f(x) = \frac{x^2}{x} = x = -\infty$$
 Limite $f(x) = \frac{x^2}{x} = x = +\infty$

$$\int_{x \to -1^-}^{\text{Limite}} f(x) = \frac{x^2}{x} = x = -\infty$$

$$\int_{x \to -1^+}^{\text{Limite}} f(x) = \frac{x^2}{x} = x = +\infty$$
3.-) $f(x) = ax + b + \frac{c}{x+1} = \frac{ax^2 + ax + bx + b + c}{x+1} = \frac{ax^2 + x + (a+b) + b + c}{x+1}$

4.-)
$$y = x - 2$$
 est asymptote à (Cf) ?

$$\lim_{x \to -\infty} [f(x) - (ax + b)] = 0 \Rightarrow \text{ alors } y = ax + b \text{ est asymptote à } (Cf)$$

$$\lim_{x \to -\infty} [f(x) - (x - 2)] = \lim_{x \to -\infty} \left[\frac{1}{x + 1}\right] = \frac{1}{\infty} = 0$$

5. La dérivée f' de f puis étudie son signe

$$f(x) = x - 2 + \frac{1}{x+1} \implies f'(x) = 1 - \frac{1}{(x+1)^2} = \frac{(x+1)^2 - 1}{(x+1)^2} \implies f'(x) = \frac{x^2 + 2x}{(x+1)^2}$$

$$f'(x) = 0 \implies x^2 + 2x = 0 \implies x = 0 \text{ ou } x = -2$$
Le signe de $x^2 + 2x \implies$ le signe du trinôme \implies + -2 - 0 + Si $x \in]-\infty$; $-2[\cup]0$; $+\infty[f'(x) > 0$
Si $x \in]-2$; $0[f'(x) < 0$

6. Dresse le tableau de variation de f.

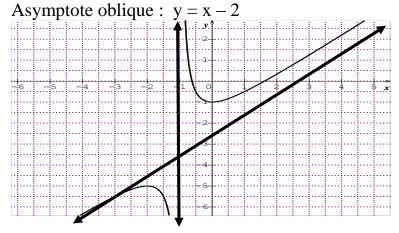
X	$-\infty$	-2	- 1	_	0		-∞
f '(x)	+	0	-	-	0	+	
f(x)		7-5		$+\infty$			_ +∞
	$-\infty$	-	$-\infty$		-1		

7. Trace la courbe (Cf) dans un repère orthonormé (O; i; j).

$$f(x) = \frac{x^2 - x - 1}{x + 1}$$

Intersection avec l'axe des abscisses : f(x) = 0 on trouve x = 1,72 ou x = -0,72 Intersection avec l'axe des ordonnés : f(0) on trouve y = 1

Asymptote verticale : x = -1



Enoncés des sujets d'examens au BAC – TSS – 2017

Exercice 1

Soit P la fonction polynôme définie par $P(x) = 2x^3 - x^2 - 13 x - 6$.

1°/ Calcule P (-2)

2°/ Détermine les réels a, b et c tels que $P(x) = (x + 2) (ax^2 + bx + c)$.

3°/ Résous dans IR l'équation P(x) = 0.

4°/ En déduis la résolution dans IR de des équations suivantes :

a) $2(\ln x)^3 - (\ln x)^2 - 13(\ln x) - 6 = 0$

b) $2e^{3x} - e^{2x} - 13e^x - 6 = 0$

Exercice

1°/ Soit la fonction f définie sur IR* par $f(x) = \frac{\ln x}{x}$

Calcule f(1); f(e); $f(e^2)$; $f(\frac{1}{e})$ et $f(e^3)$

2°/ Soit g la fonction numérique définie par $g(x) = e^{-2x^2+1}$

a.-) Calcule *g* '(*x*).

b) Ecris l'équation de la tangente (T) à la courbe de g au point d'abscisse $x_0 = 0$

Problème

On note f(x) la population (en milliers) d'une ville fondée en 1960, où x désigne la durée écoulée depuis 1960, exprimée en année. $f(x) = \frac{60x+40}{x+10}$

 $x \text{ pour } x \in [0; +\infty[.$

1°/ Détermine les nombres réels a et b tels que $f(x) = a + \frac{b}{x+10}$ pour $x \in [0; +\infty[$.

2°/ Calcule f', fonction dérivée de f puis justifie que la population croit.

 $3^{\circ}/a$) Résous l'équation f(x) = 52.

b) En déduis à partir de quelle année la population de cette ville sera supérieur à 52 000 habitants.

4°/ Calcule la limite de f en $+\infty$. Donne une interprétation quant à la population de cette ville.

5° / Trace la courbe (*C*) de f dans un repère (O, i, j), unité graphique 1cm pour 10 ans sur l'axe des abscisses et 1 cm pour 10 000 habitants sur l'axe des ordonnées.

Corrigés des sujets d'examens au BAC – TSS – 2017

Exercice 1 TSS 2017 Corrigé :
$$P(x) = 2x^3 - x^2 - 13x - 6$$

$$1^{\circ}/P(-2) = 2 * 8 - 4 - 13 * 2 - 6 = 0 \Rightarrow P(-2) = 0$$

2°/
$$P(x) = (x + 2) (ax^2 + bx + c)$$
 je développe

$$P(x) = (x + 2) (ax^2 + bx + c) = (ax^3 + bx^2 + cx + 2 ax^2 + 2 bx + 2 c)$$

$$P(x) = ax^3 + x^2(b+2a) + x(c+2b) + 2c = 2x^3 - x^2 - 13x - 6$$

Par indentification:
$$a = 2$$
; $b+2a = -1 \Rightarrow b = -5$, $c+2b = -13 \Rightarrow c = -3$

$$P(x) = (x + 2) (2x^2 - 5x - 3)$$

 3° / Résous dans IR l'équation P(x) = 0

$$P(x) = (x + 2) (2x^2 - 5x - 3) = 0$$
 \rightarrow on trouve $x = -2$ ou $x = -1/2$ ou $x = 3$

$$S = \left\{-2; -\frac{1}{2}; 3\right\}$$

4°/ En déduis la résolution dans IR de des équations suivantes :

a)
$$2(\ln x)^3 - (\ln x)^2 - 13(\ln x) - 6 = 0$$
 on pose $X = \ln x$ avec $X \in R$ et $x > 0$

$$2 X^3 - X^2 - 13 X - 6 = 0$$
 \rightarrow solution $X = -2$ ou $X = -1/2$ ou $X = 3$

$$\ln x = -2 \implies x = e^{-2}$$
; $\ln x = -1/2 \implies x = e^{-1/2}$; $\ln x = 3 \implies x = e^3$

$$S = \left\{ e^{-2} ; e^{-\frac{1}{2}} ; e^{3} \right\}$$

b)
$$2e^{3x} - e^{2x} - 13e^x - 6 = 0$$

$$\rightarrow$$
 on pose X = e^x avec $X > 0$ et $x \in R$

$$2 X^3 - X^2 - 13 X - 6 = 0$$
 \rightarrow solution $X = 3$ \rightarrow $e^x = 3$; $x = \ln 3$

$$S = \{ln 3\}$$

Exercice 2 / TSS 2017 Corrigé

$$\mathbf{1}^{\circ}/f(x) = \frac{\ln x}{x}$$

$$f(1) = \frac{\ln 1}{1} = 0$$
; $f(e) = \frac{\ln e}{e} = \frac{1}{e}$; $f(e^2) = \frac{\ln e^2}{e} = \frac{2}{e}$; $f(e^3) = \frac{\ln e^3}{e} = \frac{3}{e}$

$$f\left(\frac{1}{e}\right) = \frac{\ln \frac{1}{e}}{e} = \frac{-1}{e}$$

Rappels :

$\ln(a*b) = \ln a + \ln b$	$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$	ln(1)=0	ln(e) = 1
$\ln e^n = n$	$\ln e^1 = 1; \ln e^2 = 2$	$\ln e^3 =$	3
$ \ln\frac{1}{a} = -\ln a $			

$$2^{\circ}/g(x) = e^{-2x^2+1}$$

a.-)
$$g'(x) = (-4x + 1) e^{-2x^2 + 1}$$

Rappels

Fonctions	Dérivées
e^u	$u' e^u$
ln u	<u>u'</u>
	$\mid u \mid$

b) Equation de la tangente
$$\rightarrow$$
 $y = g'(x_0)(x - x_0) + g(x_0)$

$$g(0) = e^1$$
 $g'(0) = e^1$

$$y = e(x - 0) + e$$
 $T: y = ex + e$

Problème

 $f(x) = \frac{60x+40}{x+10}$ où x désigne la durée écoulée depuis 1960, x pour $x \in [0; +\infty[$.

1.-/
$$f(x) = a + \frac{b}{x+10} = \frac{ax+10 \ a+b}{x+10} = \frac{60 \ x+40}{x+10}$$

→ a = 60 et 10 a + b = 40 → a = 60 et b = -560 →
$$f(x) = 60 - \frac{560}{x+10}$$

 2° / Calcule f', fonction dérivée de f puis justifie que la population croit.

$$f'(x) = \frac{560}{(x+10)^2} > 0 \quad fest \ croissante$$

3°/ a)
$$f(x) = 52 \rightarrow \frac{60x + 40}{x + 10} = 52 \rightarrow \text{ on trouve } x = 60$$

b.-) x = 60 c'est à partir de 2020 (1960 + 60 = 2020) que la population de cette ville sera supérieur à 52 000 habitants.

4.- /
$$\lim_{x \to +\infty}^{Limite} f(x) = \frac{60x}{x} = 60$$

La population de cette ville ne dépassera pas 60 000 habitants quelque soit le nombre d'année.

5.-/ Trace la courbe (C) de f dans un repère (O, i, j)

Enoncés des sujets d'examens au BAC – TSS – 2016

Exercice 1:

1. Simplifiez les expressions suivantes :

$$A = \ln (2^3) - \ln (24) + \ln \left(\frac{16}{9}\right) \qquad B = \ln \left(\frac{125}{81}\right) + \ln \left(\frac{9^2}{25}\right) - \ln (5)$$
2. Résoudre dans IR les équations suivantes :

$$2 (\ln x)^2 - 3 \ln x + 1 = 0$$

$$e^{3x}-e^{2x}=0$$

3. Calcule la dérivée des fonctions f et g définies par :

$$f(x) = 2 x^3 - 3 x^2 + 5 x - 3$$

$$g(x) = \frac{2x-3}{x-2}$$

Exercice 2:

Pour célébrer leur succès au bac six élèves d'une classe de TSS se donnent

Rendez-vous dans un restaurant de la ville. Il y a six restaurants au total dans la ville et chaque élève choisit au hasard un restaurant.

- 1. Quelle est la probabilité pour que chacun des six élèves ait choisit un restaurant différent
- 2. Calcule la probabilité pour que les six élèves choisissent le même restaurant.

Exercice 3:

Soit f la fonction numérique définie par : $f(x) = \frac{2(x^2-x+1)}{x}$

- **1.** Détermine *l'*ensemble de définition de .
- 2. Calcule les limites de f aux bornes de son ensemble de définition.
- 3. Montre que f(x) peut s'écrire sous la forme $f(x) = 2x + \frac{2}{x-1}$
- **4.** Vérifier que la droite équation y = 2x est une asymptote à la courbe (C) de f
- 5. Calcule f'(x), dresse le tableau de variation de f puis trace (C) dans le plan muni d'un repère orthonormé $(0; \vec{i}; \vec{j})$.

Corrigés des sujets d'examens au BAC – TSS – 2016

Exercice 1 TSS 2016 Corrigé

1. Simplifiez les expressions

$$A = ln(2^3) - ln(24) + ln(\frac{16}{9})$$
 \rightarrow note: $24 = 2^3 \times 3$; $16 = 2^4$; $9 = 3^2$

$$A = 3 \ln 2 - \ln 3 - 3 \ln 2 + 4 \ln 2 - 2 \ln 3 = 4 \ln 2 - 3 \ln 3$$

$$A = 4 \ln 2 - 3 \ln 3$$

$$B = ln\left(\frac{125}{81}\right) + ln\left(\frac{9^2}{25}\right) - ln(5)$$
 note: $5^3 = 125$; $3^4 = 81$; $9^2 = 3^4$; $5^2 = 25$

$$B = \ln \left(\frac{5^3}{3^4}\right) + \ln \left(\frac{3^4}{5^2}\right) - \ln (5) = 3 \ln 5 - 4 \ln 3 + 4 \ln 3 - 2 \ln 5 - \ln 5$$

$$B = 0$$

Rappels de cours sur les ln et e

appeis de cours sur les met e				
$\ln(a*b) = \ln a + \ln b$	$\ln(a^x * b^y) = x \ln a + y \ln b$			
$ \ln e^n = n $	$\ln e^1 = 1$; $\ln e^2 = 2$; $\ln e^3 = 3$			
$ \ln\frac{1}{a} = -\ln a $	$ \ln\left(\frac{1}{a^y}\right) = -y \ln a $			
$ \ln\left(\frac{a}{b}\right) = \ln a - \ln b $	$\ln\left(\frac{a^x}{b^y}\right) = x \ln a - y \ln b$			

2. Résoudre dans IR les équations suivantes :

$$2 (\ln x)^2 - 3 \ln x + 1 = 0$$
 \rightarrow on pose $X = \ln x$ avec $X \in R$ et $x > 0$. $2 X^2 - 3 X + 1 = 0$

$$\rightarrow$$
 on sait que $a+b+c=0$ la racine évidente $x'=1$ et $x''=\frac{c}{a}=1/2$

Pour
$$x = 1 \rightarrow ln \ x = 1 \rightarrow x = e^1$$
 (rappelons $x = a$ alors $x = e^a$)

Pour
$$x = \frac{1}{2} \implies \ln x = \frac{1}{2} \implies x = e^{\frac{1}{2}}$$
 (rappelons $x = a$ alors $x = e^a$)

La solution
$$S = \left\{e^1; e^{\frac{1}{2}}\right\}$$

La solution
$$S = \{e^1; e^{\frac{1}{2}}\}$$

 $e^{3x} - e^{2x} = 0 \implies e^{3x} = e^{2x} \implies 3x = 2x \implies x = 0 \implies \text{La solution } S = \{0\}$

Rappels de résolution d'équation avec ln

ln x = a	$lnx = a \implies x = e^a \text{ avec } x > 0$
$a \ln x = b$	$\ln x = \frac{b}{a} \Rightarrow x = e^{\frac{b}{a}} \text{avec } x > 0$
$a (lnx)^2 + b (lnx) + c (lnx) = 0$	$X = \ln x \text{ avec } X \in R \text{ et } x > 0$
	$a X^2 +b X+c = 0$
$a (lnx)^3 + b (lnx)^2 + c (lnx) + d = 0$	$X = \ln x \text{ avec } X \in R \text{ et } x > 0$
	$a X^3 + b X^2 + c X + d = 0$

Rappels de résolution d'équation avec e^x

$e^x = a$	$e^x = a \implies x = \ln a \text{ avec } x \in R$
$a e^x = b$	$e^x = \frac{b}{a} \rightarrow x = \ln \frac{b}{a} \text{ avec } x \in R$
$a (e^x)^2 + b (e^x) + c (e^x) = 0$	$X = e^x$ avec $X > 0$ et $x \in 0$
	$a X^2 +b X +c = 0$
$a (e^x)^3 + b (e^x)^2 + c (e^x) + d = 0$	$X = e^x$ avec $X > 0$ et $x \in 0$
	$a X^3 + b X^2 + c X + d = 0$

3. Calcule la dérivée des fonctions f et g définies par :

$$f(x) = 2 x^{3} - 3 x^{2} + 5 x - 3 f'(x) = 6 x^{2} - 6 x + 5$$

$$g(x) = \frac{2x - 3}{x - 2} g'(x) = \frac{2(x - 2) - (2x - 3)}{(x - 2)^{2}} = \frac{-1}{(x - 2)^{2}}$$

Solution exercice 2:

Le nombre de cas possible

C'est le nombre de permutation possible $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$

- 1. La probabilité pour que chacun des six élèves ait choisit un restaurant différent? La probabilité P = 720 / 720 = 1
- 2. La probabilité pour que les six élèves choisissent le même restaurant. La probabilité P = 1 / 720

Solution exercice 3 : soit f la fonction numérique définie par : $f(x) = \frac{2(x^2 - x + 1)}{x - 1}$

1. f est définie ssi $x - 1 \neq 0 \Rightarrow D_f =]-\infty; 1[\cup]1; +\infty[$

2. les limites de f aux bornes de son ensemble de définition.

$$\lim_{x \to 0} \frac{2(x^2 - x + 1)}{x - 1} = \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x} = \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x} = \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x} = \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x} = \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x} = \frac{2}{0} = -\infty \quad \text{et } \lim_{x \to 0} \frac{2(x^2 - x + 1)}{x - 1} = \frac{2}{0} = +\infty$$

3. Division euclidienne

$2x^2-2x+2$	x-1
$2x^2 + 2x$	2 <i>x</i>
2	

$$f(x) = \frac{2(x^2 - x + 1)}{x - 1} = 2x + \frac{2}{x - 1}$$

4. y = 2x est une asymptote à la courbe (C) de f ssi : $\lim_{\infty} (f(x) - 2x) = 0$

$$\lim_{x \to \infty} (f(x) - 2x) = \lim_{x \to \infty} \left(2x + \frac{2}{x - 1} - 2x \right) = \lim_{x \to \infty} \left(\frac{2}{x - 1} \right) = \frac{1}{\infty} = 0$$

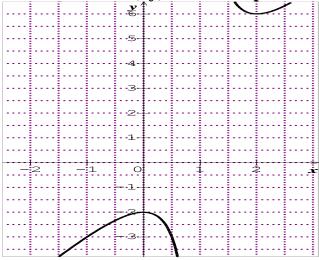
Alors la droite équation y = 2x est une asymptote à la courbe (C) de f.

5.-/
$$f(x) = 2x + \frac{2}{x-1}$$
 \Rightarrow $f'(x) = 2 - \frac{2}{(x-1)^2} = \frac{2(x-1)^2 - 2}{(x-1)^2} = \frac{2x(x-2)}{(x-1)^2}$
 $f'(x) = \frac{2x(x-2)}{(x-1)^2} = 0 \Rightarrow x = 0 \text{ ou } x = 2$

Dresse le tableau de variation de f

X	$-\infty$	0	1	2		-∞
f '(x)	+	0 -		- 0	+	
f(x)		7 -2	+∞			_ +∞
	$-\infty$	_	∞	\ 6		

Trace la courbe (Cf) dans un repère orthonormé (O; i; j).



Enoncés des sujets d'examens au BAC – TSS – 2015

Exercice 1: TSS – 2015

Dans une classe de 65 élèves :

- 35 pratiquent du football,
- 40 pratiquent du basketball et,
- 5 ne pratiquent aucun de ces deux sports.

1°/ Déterminez le nombre d'élèves qui pratiquent à la fois le football et le basketball.

- 2°/ Déterminez le nombre d'élèves qui jouent :
- a) uniquement au football.
- **b)** uniquement au basketball
- **3**°/ Dans cette classe on choisit au hasard 3 élèves pour représenter la classe à une compétition interclasse.
- a) Quelle est la probabilité pour que les trois élèves pratiquent à la fois le football et le basketball ?
- **b**) Quelle est la probabilité pour que parmi les trois élèves: 1 pratique uniquement le football, 1 pratique uniquement le basketball et 1 pratique à la fois le football et le basketball ?

Dans cet exercice tous les résultats seront donnés sous forme de fractions.

Exercice 2: TSS - 2015

Une société de production d'eau potable traite les x% de l'eau qu'elle tire du fleuve. Le coût de traitement de la quantité x d'eau est, en milliers de francs, donné par

$$C(x) = \frac{230x}{100-x}$$

(Exemple le coût de traitement de 1% de l'eau est $\frac{230}{100-1}$ = 2,323x1000 = 2323F

1°/ Quel est le coût de traitement arrondi au franc près de 10%, de 20% de l'eau qu'elle tire du fleuve ?

2°/ Quel pourcentage d'eau peut-on traiter avec 1 000 000 F?

3°/ Cette société peut-elle traiter toute l'eau tirée du fleuve ? Justifiez votre réponse ?

Exercice 3: TSS - 2015

On considère la fonction f définie par $f(x) = x^3 - 3x + 2$ et (C) la courbe représentant ses variations dans le plan muni d'un repère orthonormé

 1° / Quel est l'ensemble de définition de f? Calculez les limites de f(x) aux bornes de cet ensemble.

 2° / Calculez la dérivée f '(x), étudiez son signe et dressez le tableau de variations de f.

3°/ Donnez l'équation de la tangente (T) à la courbe (C) au point d'abscisse x = -2.

4° / Recopiez et complétez le tableau ci-dessous.

X	-2	- 1	0	1	2
f(x)					

 5° / Tracez dans le même repère la courbe (C) et la tangente (T)

Corrigés des sujets d'examens au BAC – TSS – 2016

Corrigé de l'exercice 1 TSS 2015 Corrigé

	Pratique le Football = 35	Ne pratique pas le football = 30
	Pratique le Basketball = 40	Ne pratique pas le Basketball = 25
65 élèves		
	Ni foot ni basket = 5	Pratique à la fois le foot et basket = 60

Uniquement le Football = 60 - 40 = 20

Uniquement au basketball = 60 - 35 = 25

1°/ Le nombre d'élèves qui pratiquent à la fois le football et le basketball = 60 **Rép**: 65 - 5 = 60

2°/ Déterminez le nombre d'élèves qui jouent :

a.-) uniquement au football =
$$60 - 40 = 20 \Rightarrow \text{Rép} : 65 - 40 - 5 = 20$$

b.-) uniquement au basketball =
$$60 - 35 = 25$$
 Rép: $65 - 35 - 5 = 25$

3°/

a) La probabilité pour que les trois élèves pratiquent à la fois le football et le basketball

$$Proba = 3 / 60 = 0.05$$

b) La probabilité pour que parmi les trois élèves: 1 pratique uniquement le football, 1 pratique uniquement le basketball et 1 pratique à la fois le football et le basketball Proba = $1/20 * 1/25 * 1/60 = 1/30\,000$

Corrigé de l'exercice 2 TSS 2015

Le coût de traitement de la quantité x d'eau est : $C(x) = \frac{230x}{100-x}$

1°/ Le coût de traitement arrondi au franc près de 10% → $C(10) = \frac{230*10}{100-10} = 25555$

Le coût de traitement arrondi au franc près de 20% \rightarrow $C(20) = \frac{230*20}{100-20} = 57\,500$

2°/ Le pourcentage d'eau peut-on traiter avec 1 000 000 F?

$$C(x) = \frac{230x}{100-x} = 1\ 000 \implies 100\ 000 - 1\ 000x = 230\ x \implies 81,3\%$$

 3° / Cette société traite toute l'eau tirée du fleuve signifie que x = 100%.

$$C(x) = \frac{230x}{100 - x} \Rightarrow x = 100\% \Rightarrow \lim_{x \to 100} \left(\frac{230x}{100 - x}\right) = \frac{23000}{0} = +\infty$$

Il sera très difficile pour cette société de traiter toute l'eau tirée du fleuve.

Exercice 3 : TSS - 2015

$$f(x) = x^3 - 3x + 2$$

1°/L'ensemble de définition de $f \rightarrow Df =]-\infty; +\infty[$

Les limites de f(x) aux bornes de cet ensemble

$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} (x^3 - 3x + 2) = \lim_{\substack{x \to +\infty \\ x \to -\infty}} (x^3) = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} (x^3 - 3x + 2) = \lim_{\substack{x \to +\infty \\ x \to -\infty}} (x^3) = -\infty$$

2°/

La dérivée
$$f'(x) \rightarrow f'(x) = 3x^2 - 3$$

L'étude du signe de la dérivée : $f'(x) = 0 \implies f'(x) = 3x^2 - 3 = 0$

$$3(x^2 - 1) = 0$$
 \rightarrow x = 1 ou x = -1 \rightarrow le signe du trinôme

Si
$$x \in]-\infty$$
; $-1[\cup]1$; $+\infty[$ alors $f'(x) > 0$ et $f(x)$ est croissante

Si $x \in [1; -1[$ alors f'(x) < 0 et f(x) est décroissante.

Le tableau de variations de f.

X	-∞	-1		1		+∞
f '(x)	+	0	-	0	+	
f(x)	-∞	4		0		+∞

3°/L'équation de la tangente (T) à la courbe (C) au point d'abscisse $x = x_0$ → x = -2.

$$y = f'(x_0) (x - x_0) + f(x_0)$$

$$\rightarrow f'(x) = 3x^2 - 3 \rightarrow f'(-2) = 3 * 4 - 3 = 9$$

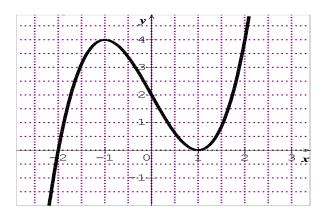
$$f(x) = x^3 - 3x + 2$$
 $f(-2) = -8 + 6 + 2 = 0$

→
$$T: y = 9 x + 18$$

4° / **L**e tableau des valeurs → $f(x) = x^3 - 3x + 2$

X	-2	- 1	0	1	2
f(x)	0	4	2	0	4

 5° / Trace dans le même repère la courbe (C) et la tangente (T)



Enoncés des sujets d'examens au BAC – TSS – 2014

Exercice 1 / TSS 2014:

1-/ Calculez la fonction dérivée des fonctions numériques définies par :

$$f(x) = \frac{x^2 - 1}{x + 3}$$
 $g(x) = x^3 - \frac{2}{3}x^2 + 7x - 9$

2-/ A l'occasion d'une compétition sportive regroupant 18 athlètes, on attribue une médaille d'or, une d'argent et une de bronze. Combien il y a t-il de distributions possibles (avant la compétition).

3-/ Simplifiez les expressions suivantes :

$$A = e^{\ln 4} + \ln e^3 + \ln e^{-5} - e^{\ln 2}$$
; $B = \ln 2^5 - \ln 8 + \ln 32 - \ln 64$.

4-/ Dans une classe de terminale TSS il y a 24 élèves. Ils doivent tous s'inscrire à un concours de journalisme. Pour cela, il faut établir une liste d'inscription. Combien il y a t-il de manières de constituer cette liste?

Exercice 2 / TSS 2014

Dans une maternité on a relevé le poids et la taille de 10 nouveaux nés et les résultats sont consignés dans le tableau suivant :

Enfant	1	2	3	4	5	6	7	8	9	10
Poids en kg	2,5	2,6	2,7	3	3,2	3,3	3,4	3,6	3,8	3,9
Taille en cm	45	46	48	50	51	52	53	54	54	57

On veut savoir si connaissant le poids d'un nouveau-né on peut avoir une idée sur sa taille.

- 1-/ Faire un ajustement affine de la taille en fonction du poids par la méthode de Mayer.
- 2-/ Vérifier que le poids moyen est sur la droite d'ajustement après l'avoir déterminé.
- **3-/** Si un bébé pèse 4,2 kg, quelle sera sa taille probable ?

Exercice 3 / TSS 2014

Soit f la fonction numérique de la variable réelle définie pour tout x par

$$f(x) = \frac{2}{3}x^3 + x^2 - 4 + 1$$

On désigne par (C) sa courbe représentative dans repère orthogonal (O; i, j)

- **1-/** Calculer f'(x) puis étudier son signe
- **2-/** Dresser le tableau de variation de *f*
- 3-/ Déterminer une équation de la tangente (T) à (C) au point d'abscisse 1.
- 4-/ Construire (C) et (T) dans le même repère.

Corrigés des sujets d'examens au BAC – TSS – 2014

Exercice 1 / TSS 2014 / Corrigé

1°) Calculons la dérivée des fonctions suivantes :

$$f(x) = \frac{x^2 - 1}{x + 3} f'(x) = \frac{2x(x + 3) - 1(x^2 - 1)}{(x + 3)^2} f'(x) = \frac{x^2 + 6x + 1}{(x + 3)^2}$$
$$g(x) = x^3 - \frac{2}{3} x^2 + 7x - 9 g'(x) = 3 x^2 - \frac{4}{3} x + 7$$

2°) Le nombre de distributions possibles correspond au nombre d'arrangement de 3 éléments parmi 18, soit : $A_{18}^3 = \frac{18!}{(18-3)!} = 4896$ distribuions possibles

3°) Simplification:

$$A = e^{\ln 4} + \ln e^3 + \ln e^{-5} - e^{\ln 2} = 4 + 3 - 5 - 2 = 0 \implies A = 0$$

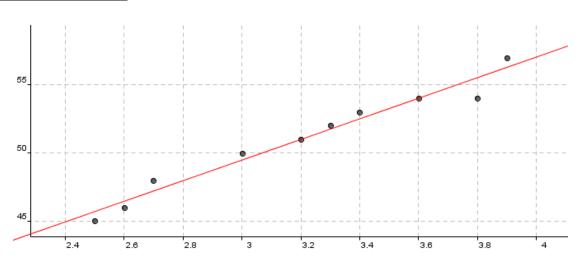
$$B = \ln 2^5 - \ln 8 + \ln 32 - \ln 64 = \ln 2^5 - \ln 2^3 + \ln 2^5 - \ln 2^6 = 0$$

$$B = 5 \ln 2 - 3 \ln 2 + 5 \ln 2 - 6 \ln 2 = \ln 2 \implies B = \ln 2$$

 4°) Le nombre de façon pour construire cette liste correspond au nombre de permutation des 24 élèves, soit : $24 ! = 24 \times 23 \times \times 2 \times 1$

Exercice 2 / TSS 2014:

1°)



Soit
$$G_1(\overline{x_1}; \overline{y_1})$$
 le point moyen du sous-nuage N_1 des cinq premiers points : $\overline{x_1} = \frac{2,5+2,6+2,7+3+3,2}{5} = 2,8$ $\overline{y_1} = \frac{45+46+48+50+51}{5} = 48 \implies G_1(2,8; 48)$ Soit $G_2(\overline{x_2}; \overline{y_2})$ le point moyen du sous-nuage N_2 des cinq derniers points $\overline{x_1} = \frac{3,3+3,3+3,6+3,8+3,9}{5} = 3,6$; $\overline{y_1} = \frac{52+53+54+54+57}{5} = 54 \implies G_2(3,6; 54)$

Soit $(G_1; G_2)$ la droite d'ajustement affine de Mayer d'équation y = ax + b

$$G_1(2.8; 48) \in y = ax + b \implies 2.8 \text{ a} + \text{b} = 48$$

$$G_2(3,6; 54) \in y = ax + b \implies 3,6 a + b = 54$$

$$(2,8 a + b = 48)$$

$$\begin{cases} 2.8 \ a + b = 48 \\ 3.6 \ a + b = 54 \end{cases}$$
 on trouve $a = 7.5$ et $b = 27$

$$(G_1, G_2) \rightarrow y = 7.5 x + 27$$

$$\bar{x} = \frac{2,5+2,6+2,7+3+3,2+3,3+3,4+3,6+3,8+3,9}{2} = 3,2$$

2°) Vérifions que le point moyen
$$G(\bar{x}; \bar{y})$$
 est sur la droite d'ajustement $\bar{x} = \frac{2,5+2,6+2,7+3+3,2+3,3+3,4+3,6+3,8+3,9}{10} = 3,2$ $\bar{y} = \frac{45+46+48+50+51+52+53+54+57}{10} = 51$

$$(G_1G_2)$$
: $y = 7,5x + 27$

Pour
$$x = 3,2$$
: $y = 7,5(3,2) + 27 = 51 = \overline{y}$ d'où $G(3,2;51) \in (G_1G_2)$

$$3^{\circ}$$
) $y = 7,5x + 27$

Si x = 4,2 alors y = 7,5(4,2) + 27 = 58,5. La taille du bébé serait donc 58,5 cm

Exercice3:

Soit
$$f(x) = \frac{2}{3}x^3 + x^2 - 4x + 1$$

1°) Calculons f'(x) et étudions son signe

$$f'(x) = 2x^2 + 2x - 4$$

$$f'(x) = 0 \Leftrightarrow 2x^2 + 2x - 4 = 0 \quad (a = 2; b = 2; c = -4)$$

$$\Delta = b^2 - 4ac = 2^2 - 4(2)(-4) = 36 = 6^2$$

$$x = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-2 - 6}{4} = -2$$
 ou $x = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + 6}{4} = 1$.

х	-∞ -2	1	+∞
f'(x)	+ 0	- 0	+

$$\forall x \in]-\infty; -2] \cup [1; +\infty[f'(x) \ge 0 ; \forall x \in [-2; 1] f'(x) \le 0.$$

2°) Dressons le tableau de variation de f

$$D_f = \Box =]-\infty; +\infty[$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{2}{3}x^3\right) = -\infty \quad ; \qquad \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{2}{3}x^3\right) = +\infty$$

$$f(-2) = \frac{2}{3}(-2)^3 + (-2)^2 - 4(-2) + 1 = \frac{23}{3} = 7,66$$
; $f(1) = \frac{2}{3}(1)^3 + (1)^2 - 4(1) + 1 = -\frac{4}{3} = 1,33$

x	-∞	-2		1		+∞
f'(x)	+	0	_	0	+	
f(x)	-∞ /	$\frac{23}{3}$		$-\frac{4}{3}$		+∞

3°) Déterminons une équation de la tangente (T) à (C) au point d'abscisse 1 (T): y = f'(1)(x-1) + f(1)

$$f'(1) = 2 + 2 - 4 = 0$$
; $f(1) = -\frac{4}{3}$ Donc $(T): y = -\frac{4}{3}$.

4°) Construisons (C) et (T) dans un repère orthonormé :

Tableau de valeur de f(x):

х	-4	-3	-2	-1	0	1	2
f(x)	-9,6	4	7,6	5,3	1	-1,3	2,3

