BACCALAURÉAT BLANC DRENA SAN PÉDRO UP : Mathématiques

Année scolaire 2023-2024 Niveau : T^{le} C

Durée: 04h00 Coefficient 5

MATHEMATIOUES

Cette épreuve comporte 3 pages numérotées 1/3, 2/3 et 3/3. Chaque candidat recevra une (01) feuille de papier millimétré. Seules les calculatrices scientifiques non graphiques sont autorisées

EXERCICE 1: (2 points)

Écris sur ta copie le numéro de chaque affirmation, suivi de "V" si elle est vraie ou de "F" si elle est fausse.

N°	Affirmations			
1	Si $\lim_{x \to -\infty} (f(x) - 2x + 3) = 0$, alors la droite d'équation $y = 2x - 3$ est asymptote			
	oblique en $-\infty$ à la courbe représentative de de f dans un repère (0 ; I ; J).			
2	Dans l'espace muni d'un repère orthonormé $(0;\vec{\imath};\vec{j};\vec{k})$, si P est le plan d'équation			
	cartésienne : $x + \frac{3}{2}y + 2z - 4 = 0$, alors le vecteur $\vec{n}(2; 3; 4)$ est un vecteur normal à P.			
3	Le plan est muni d'un repère orthonormé (0 ;I ;J). l'ellipse d'équation réduite :			
	$\frac{x^2}{9} + \frac{y^2}{16} = 1$, de demi distance focale $\sqrt{7}$ a pour foyer $F(\sqrt{7}; 0)$ et $F'(-\sqrt{7}; 0)$.			
4	Toute suite numérique bornée et croissante admet une limite finie.			

EXERCICE 2 : (2 points)

Pour chacune des affirmations du tableau ci-dessous, trois réponses A, B et C sont proposées dont une seule permet d'avoir l'affirmation juste.

Écris le numéro de chaque affirmation, suivi de la lettre correspondant à la bonne réponse.

\mathbf{N}°	Affirmations	Réponses	
1	Dans un repère de l'espace, les droites (D) et (Δ) de représentations paramétriques respectives $\begin{cases} x=5+t & \{x=-1+3u \\ y=2t & ,t\in\mathbb{R} \text{ et } \} \\ y=6u & ,u\in\mathbb{R} \text{ sont } \dots \end{cases}$	A	sécantes.
		В	strictement parallèles.
	$\begin{cases} y = 2t & \text{, } t \in \mathbb{R} \text{ et } \begin{cases} y = 6u & \text{, } u \in \mathbb{R} \text{ sont} \\ z = -1 - 9u \end{cases}$	С	sont perpendiculaires.
2	L'unité de longueur est le centimètre. ABC est un	A	un cercle.
	triangle isocèle en C tel que AB=4, AC=BC=6 et I milieu de [AB]. L'ensemble (E) des points M du	В	une droite.
	plan tel que $2MA^2 + 2MB^2 - 4MC^2 = 0$ est	C	un plan.
3	Le plan est muni du repère orthonormé direct	A	une droite passant par A.
	$(0; \overrightarrow{e_1}; \overrightarrow{e_2})$ et A le point d'affixe $2 - i$. L'ensemble	В	un cercle de centre A.
	(C) des points M du plan d'affixe z tels que	С	une demi-droite
	Arg $(z - 2 + i) = \frac{\pi}{4}$ est	C	d'origine A.
4	Dans le plan muni d'un repère orthonormé (0 ; I ; J),	A	une hyperbole.
	l'ensemble (Γ) d'équation	В	une parabole.
	$(x-2)^2 - 4(y+1)^2 - 16 = 0$ est	С	une ellipse.

EXERCICE 3: (4points)

n est un entier naturel non nul.

On considère la fonction numérique f_n définie sur IR par : $f_n(x) = x + \frac{e^{-x}}{n}$

Soit (C_n) la courbe représentative de f_n dans le plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1-Calculer $\lim_{x\to-\infty} f_n(x)$ et $\lim_{x\to+\infty} f_n(x)$.
- 2-a) Calculer $\lim_{x\to -\infty} \frac{f_n(x)}{x}$, puis interpréter graphiquement le résultat.
- b) Montrer que la droite (D) d'équation y = x est une asymptote oblique à la courbe (C_n) au voisinage de $+\infty$, puis déterminer la position relative de (C_n) et (D).
- 3-Etudier les variations de f_n et dresser son tableau de variations.
- 4-Construire la courbe (C_3) . (On prendra $f_3(-0.6) \approx 0$ et $f_3(-1.5) \approx 0$ et $\ln 3 \approx 1.1$)
- 5-a) Montrer que pour $n \ge 3$ on a : $\frac{e}{n} < \ln n$.
- b) Montrer que pour $n \ge 3$, l'équation $f_n(x) = 0$ admet exactement deux solutions x_n et y_n telles que :

$$x_n \le -lnn$$
 et $\frac{-e}{n} \le y_n \le 0$.

- c) Calculer $\lim_{n\to+\infty} x_n$ et $\lim_{x\to+\infty} y_n$.
- 6-On considère la fonction numérique g définie $\sup[0;+\infty[$ par : $\begin{cases} g(x) = -1 x \ln x & x > 0 \\ g(0) = -1 \end{cases}$
- a) Montrer que la fonction g est continue à droite au point 0.
- b) Vérifier que pour $n \ge 3$, on a : $g\left(\frac{-1}{x_n}\right) = \frac{\ln n}{x_n}$.
- c) En déduire $\lim_{x \to +\infty} \frac{\ln n}{x_n}$.

EXERCICE 4: (3points)

L'unité est le centimètre. Dans le plan orienté, on donne un carré ABCD de centre I tel que AB=3 et F le barycentre des points pondérés (A ;4), (B ;-1) et (D ;-1).

- 1- a) Démontre que A est le milieu du segment [FI].
 - b) Justifie que $FB^2 = \frac{45}{2}$ puis que FB = FD.
- 2- Soit (E_1) l'ensemble des points du plan tels que $:4MA^2 MB^2 MD^2 = 9$.
 - a) Démontre que $M \in (E_1) \Leftrightarrow 2MF^2 27 = 9$.
 - b) Détermine et construis l'ensemble (E_1)
- 3- Dans le plan muni d'un repère $(B; \vec{\imath}; \vec{\jmath})$, on admet que les coordonnées des points A et C sont A(0;3), C(3;0) et la droite (AD) a pour équation : y = 3. Soit (E_2) l'ensemble des points M(x;y) du plan tels que $4MA^2 MB^2 MD^2 = \frac{1}{2}(y-3)^2 27$.
- a) Détermine les coordonnées du point F puis justifie que dans le repère $(B; \vec{i}; \vec{j})$, une équation de (E_2) est $: \frac{4(x+1,5)^2}{3} + (y-5)^2 = 1$.
- b) Déduis-en que (E_2) est une ellipse dont on précisera l'excentricité, un foyer et la directrice associée.
- c) Justifie que les coordonnées des sommets sont : $S_1\left(-\frac{3}{2};4\right)$ et $S_2\left(-\frac{3}{2};6\right)$.
- d) Construis (E_2) sur la même figure que (E_1) .

EXERCICE 5: (4points)

Partie I:

- 1.a) On donne le nombre complexe : $a = 2 2i\sqrt{3}$. Détermine sous forme algébrique les racines carrées de a.
 - b) Résous dans C l'équation : $2z^2 (3\sqrt{3} + 3i)z + 4i\sqrt{3} = 0$
- 2. Soit le polynôme complexe *p* tel que : $p(z) = 2z^3 3(\sqrt{3} + 3i)z^2 10(1 i\sqrt{3}) + 8\sqrt{3}$.
 - a) Vérifie que : p(2i) = 0.
 - b) Résous dans \boldsymbol{C} l'équation p(z) = 0.

Partie II:

Le plan complexe est rapporté à un repère orthonormé direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$, unité graphique 2cm. On donne les points U, B et K d'affixes respectives $z_U = \sqrt{3} + i$, $z_B = 2i$ et $z_K = \frac{\sqrt{3}}{2} + \frac{3}{2}i$.

- 1. a) Place les points U, B et K dans le plan complexe.
 - b) Ecris sous forme trigonométrique les nombres complexes z_U , z_B et z_K .
- 2. Détermine la nature du triangle BOU.
- 3. Soit C l'image du point O par la symétrie de centre K.
 - a) Détermine l'affixe du point C.
 - b) Démontre que le quadrilatère BOUC est un losange.
- 4. On note $G = bar \{(0,2), (U,-1), (C,1)\}.$
 - a) Démontre que G est le milieu du segment [BO].
 - b) Détermine et construis l'ensemble (A) des points M du plan tels que :

$$||2\overrightarrow{MO} - \overrightarrow{MU} + \overrightarrow{MC}|| = ||\overrightarrow{MB} + \overrightarrow{MU} - 2\overrightarrow{MC}||.$$

EXERCICE 6: (5 points)

Pour fructifier ses affaires, KOUYA un jeune de la commune de SAN PEDRO décide d'ouvrir le coffrefort contenant des objets précieux que lui a légués son défunt père anciennement professeur de Mathématiques. Après avoir ouvert le coffret contenant le coffre-fort, il découvre une enveloppe contenant une feuille sur laquelle sont données des indications sur le code de déverrouillage du coffrefort. Sur la feuille, on pouvait lire ceci :

- le code de déverrouillage est un nombre entier naturel de quatre chiffres, multiple de 99 ;
- le chiffre des milliers est le chiffre des unités du nombre 3²⁰²³ ;
- le chiffre des centaines est la plus petite solution dans N de l'équation (E): $4x + 5 \equiv 0$ [7].

Ne sachant comment exploiter ces informations, il te sollicite. A l'aide d'une production argumentée, basée sur tes connaissances mathématiques, donne une réponse à KOUYA.