BEPC BLANC MARS 2024

Coefficient 3 Durée : 2 h

ÉPREUVE DE MATHÉMATIQUES

Cette épreuve comporte trois (02) pages numérotées 1/2 et 2/2 L'usage de la calculatrice scientifique est autorisé.

EXERCICE 1 (3 points)

Pour chacun des énoncés ci-dessous, écris le numéro de l'énoncé suivi de la lettre de la colonne permettant d'obtenir l'affirmation juste.

							A	В	С
1	Le nombre $\sqrt{(-7)^2}$ est égal à						-7	7	49
2	L'amplitude de l'intervalle [-7; 2] est						2 -7	2 +7	$\frac{-7+2}{2}$
3	a, b, c et d sont des nombres tels que $b \neq 0$ et $d \neq 0$. $\frac{a}{b} = \frac{c}{d} \text{ équivaut à } \dots$				0.	ac = bd	ab = cd	da = cb	
	On donne le tableau des effectifs d'une série								
4	statistique :					100	[0.5]	[15 20]	[10.15]
4	Notes	[0;5[[5; 10[[10;15[[15;20[[0; 5[[15;20[[10;15[
	Effectifs	11	19	21	19				
	La classe modale de cette série statistique est								

EXERCICE 2 (2 points)

Pour chacune des affirmations suivantes, écris le numéro de l'affirmation suivi de VRAI si l'affirmation est vraie ou de FAUX si elle est fausse.

1. A et B sont deux points distincts du plan.

 $M \notin (AB)$ équivaut à \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires.

- 2. Dans un cercle, la mesure d'un angle inscrit est égale au double de la mesure de l'angle au centre associé.
- 3. PQR est un triangle.

$$M \in (PQ)$$
 et $N \in (PR)$. Si $(MN)//(QR)$, alors : $\frac{PQ}{PM} = \frac{PR}{PN}$

4. La droite (D) d'équation y = 3 - 2x a pour coefficient directeur 3.

EXERCICE 3 (3 points)

On donne les nombres réels A et B tels que : $A = \frac{11-5\sqrt{5}}{\sqrt{5}-2}$ et $B = |\sqrt{5}-3|$.

- 1. Justifie que $A = \sqrt{5} 3$.
- 2. a) Détermine le signe de A.
 - b) Déduis-en l'expression de B sans la valeur absolue.
- 3. Sachant que 2,236 $< \sqrt{5} <$ 2,237, détermine un encadrement de 3 $-\sqrt{5}$ par deux nombres décimaux consécutifs d'ordre 2.

EXERCICE 4 (4 points)

Le plan est muni d'un repère orthonormé (0, 1, J)

On donne les points A, B, C et D tels que A(1; -3), B(2; -5) et $\overrightarrow{CD}(2; -4)$.

- 1. Calcule le couple de coordonnées du point K, milieu du segment [AB].
- 2. a) Justifie que le couple de coordonnées du vecteur \overrightarrow{AB} est (1; -2).
 - b) Déduis-en que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

EXERCICE 5 (4 points)

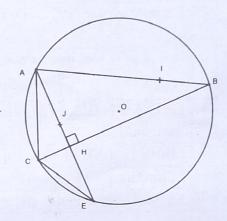
L'unité de longueur est le centimètre.

Sur la figure ci-contre qui n'est pas en grandeurs réelles, le cercle (C) de centre O est le cercle circonscrit au triangle ABC; la perpendiculaire à la droite (BC) passant par A recoupe le cercle (C) en E; la droite (AE) coupe la droite (BC) en H.

Les points I et J appartiennent respectivement aux segments [AB] et [AH].

On donne: AB = 12; AC = 5; AI = 9; AJ = CH = 3.

- 1. Justifie que : AH = 4.
- 2. Démontre que les droites (IJ) et (BC) sont parallèles.
- 3. Justifie que : $mes\widehat{ABC} = mes\widehat{AEC}$.
- 4. a) Justifie qu'une valeur approchée de $sin\widehat{ABH}$ à 10^{-2} près est : 0,33.
 - b) Utilise l'extrait de la table trigonométrique ci-contre pour encadrer *mes* \widehat{ABH} par deux entiers consécutifs.



a°	18	19	20	21
sin a°	0,309	0,326	0,342	0,358
cos a°	0,951	0,946	0,940	0,934

EXERCICE 6 (4 points)

Emma, une élève est envoyée au marché par sa mère pour des achats de vivres pour la famille. Parmi les éléments à acheter on y trouve, les fruits de pamplemousses et de mangues. À son retour du marché, sa mère veut connaître le prix d'achat des pamplemousses et des mangues. Mais malheureusement Emma a oublié le prix auquel elle a acheté ces fruits. Elle se souvient avoir acheté 1kg de pamplemousses et 3kg de mangues à 3650 f et le prix d'un kg de pamplemousses est 2 fois celui d'un kg de mangues.

On désigne par x le prix d'un kg de mangues.

- 1. Traduis par une équation, les informations :
 - « 1kg de pamplemousses et 3kg de mangues ont couté 3650 F et le prix d'un kg de pamplemousses est 2 fois celui d'un kg de mangues ».
- 2. Résous dans \mathbb{R} , l'équation : 2x = 3650 3x.
- 3. Détermine le prix des 3kg de mangues et le prix du kg de pamplemousses.

BEPC BLANC RÉGIONAL SESSION DE MARS 2024

CORRIGÉ ET BARÈME

EXERCICE	Corrigé	Barème
EXERCICE 1 (3 points) EXERCICE 2 (2 points)	1- B	1 point 1 point 0,5 point 0,5 point 0,5 point×4
EXERCICE 3 (3 points)	1. Justification correcte de : $A = \sqrt{5} - 3$. 2. a) On a : $A < 0$. b) $B = A = 3 - \sqrt{5}$ 3. $2,236 < \sqrt{5} < 2,237$ $-2,237 < -\sqrt{5} < -2,236$ $3 - 2,237 < 3 - \sqrt{5} < 3 - 2,236$ $0,763 < 3 - \sqrt{5} < 0,764$ Donc : $0,76 < 3 - \sqrt{5} < 0,77$.	1 point 0,5 point 0,5 point 1 point
EXERCICE 4 (4 points)	1. $x_K = \frac{x_A + x_B}{2} = \frac{3}{2}$ et $y_K = \frac{y_A + y_B}{2} = -4$ On a donc : $K\left(\frac{3}{2}; -4\right)$. 2. a) Justification correcte de : $\overrightarrow{AB}(1; -2)$. b) $\overrightarrow{CD} = 2 \overrightarrow{AB}$ Donc, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.	0,5 point
	Donc, les vecteurs AB et CD sont conneaires.	0,5 point

EXERCICE 5 (4 points)	 Le triangle ACH est rectangle en H. D'après la propriété de Pythagore, on a : AC² = AH² + CH²	0,5 point 0,5 point
	aux segments $[AB]$ et $[AH]$. $\frac{AI}{AB} = \frac{9}{12} = \frac{3}{4} \text{ et } \frac{AJ}{AH} = \frac{3}{4}$ On a: $\frac{AI}{AB} = \frac{AJ}{AH}$. D'après la réciproque de la propriété de Thalès, les droites (IJ) et (BH) sont parallèles. Or $(BH) = (BC)$. Donc, les droites (IJ) et (BC) sont parallèles.	0,5 point 0,5 point
	 3. Dans le cercle (C), les angles inscrits \(\overline{ABC}\) et \(\overline{AEC}\) interceptent le même arc, donc : \(mes\overline{ABC} = mes\overline{AEC}\). 4. a) Dans le triangle rectangle \(ABH\), on a : \(sin\overline{ABH} = \frac{AH}{AB}\) Donc : \(sin\overline{ABH} = \frac{4}{12} = \frac{1}{3}\). 	0,5 point 0,5 point
	Une valeur approchée de $sin\widehat{ABH}$ à 10^{-2} près est : 0,33 b) On a : 0,326 < 0,33 < 0,342. Donc : $19^{\circ} < mes\widehat{ABH} < 20^{\circ}$	0,5 point 0,5 point
EXERCICE 6 (4 points)	 x est le prix d'un kg de mangues. Le prix d'un kg de pamplemousses est 2x. 1kg de pamplemousses et 3kg de mangues ont couté 3650 F se 	1 point
	traduit par : $2x + 3x = 3650$	1 point 1 point
	3. Le prix des $3kg$ de mangues est : $3 \times 730 F = 2190 F$. Le prix du kg de pamplemousses est : $2 \times 730 F = 1460 F$.	0,5 point 0,5 point