

Feuille d'exercices n°7 : Calcul matriciel

PTSI B Lycée Eiffel

3 décembre 2013

Exercice 1 (*)

On considère la matrice
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- 1. Déterminer toutes les matrices B dans $\mathcal{M}_3(\mathbb{R})$ telles que AB = 0.
- 2. Déterminer toutes les matrices C dans $\mathcal{M}_3(\mathbb{R})$ telles que AC = CA = 0.

Exercice 2 (* à **)

Déterminer toutes les matrices qui commutent avec chacune des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}; B = \begin{pmatrix} 1 & 0 & 1 \\ 3 & -1 & 2 \\ -2 & 1 & -1 \end{pmatrix}; I_n; C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Déterminer les matrices qui commutent avec toutes les matrices diagonales de $\mathcal{M}_n(\mathbb{R})$. Déterminer les matrices qui commutent avec toutes les matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

Exercice 3 (*)

Déterminer une condition nécessaire et suffisante pour que le produit de deux matrices symétriques soit encore symétrique (très peu de calculs nécessaires).

Exercice 4 (**)

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant AB - BA = B. Montrer que, $\forall k \in \mathbb{N}$, $AB^k - B^k A = kB^k$, et en déduire la valeur de $Tr(B^k)$.

Exercice 5 (**)

On fixe A et B deux matrices dans $\mathcal{M}_n(\mathbb{R})$. Résoudre l'équation X + Tr(X)A = B, où X est une matrice inconnue dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 6 (***)

On considère la matrice $A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$.

- 1. Déterminer un polynôme de degré 2 annulant la matrice A.
- 2. En déduire que A est inversible et calculer son inverse (sans faire le pivot de Gauss).
- 3. En utilisant les racines du polynôme trouvé à la question 1, déterminer le reste de la division euclidienne de X^n par ce polynôme, pour un entier $n \ge 2$.
- 4. En déduire la valeur de A^n .

Exercice 7 (**)

On considère dans $\mathcal{M}_n(\mathbb{R})$ la matrice J dont tous les coefficients sont égaux à 1. Calculer J^2 puis déterminer les puissances de matrice J. En déduire, à l'aide de la formule du binôme de Newton, les

puissances de la matrice
$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
.

Exercice 8 (**)

Déterminer les puissances de la matrice $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$ (au moins deux méthodes possibles).

Exercice 9 (***)

Soit
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 6 & -2 & -4 \\ -4 & 1 & 3 \end{pmatrix}$$
.

- 1. Montrer que $A^3 = 6A A^2$.
- 2. Montrer qu'il existe deux suites a_k et b_k telles que $A^k = a_k A^2 + b_k A$ (pour $k \ge 2$).
- 3. Trouver des relations de récurrence pour a_k et b_k et en déduire leurs valeurs.
- 4. En déduire l'expression de A^k . Reste-t-elle valable pour k=0 et pour k=1?

Exercice 10 (*)

$$\text{Inverser (lorsque c'est possible) les matrices suivantes} : A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}; B = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}; \\ C = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 5 \end{pmatrix}; D = \begin{pmatrix} 2 & 2 & 1 \\ -1 & 1 & 2 \\ 0 & 4 & 4 \end{pmatrix}; E = \begin{pmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & 0 \end{pmatrix}; F = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Exercice 11 (**)

On considère les matrices $A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$. Montrer que P est

inversible et déterminer son inverse. Calculer $P^{-1}AP$ et en déduire les puissances de la matrice A.

Exercice 12 (**)

Soit A une matrice nilpotente. Montrer que I-A est inversible et que son inverse s'écrit sous la forme $I + A + A^2 + \cdots + A^k$. En déduire l'inverse de la matrice $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ et celui de la

$$\text{matrice } B = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right).$$

Exercice 13 (**)

Déterminer l'inverse de la matrice suivante (matrice carrée à n lignes et n colonnes) :

$$\begin{pmatrix}
1 & 1 & 0 & & \dots & & 0 \\
0 & 1 & 1 & 0 & & \dots & 0 \\
\vdots & & \ddots & \ddots & & \vdots \\
\vdots & & & \ddots & \ddots & \vdots \\
0 & \dots & & 0 & 1 & 1 \\
0 & & \dots & & 0 & 1
\end{pmatrix}$$

Exercice 14 (**)

Déterminer l'inverse de la matrice suivante (on peut perdre énormément de temps à appliquer un pivot bête et (très) méchant, on peut aussi chercher des astuces diaboliques à bases de racines sixièmes de l'unité) :

Exercice 15 (**)

Résoudre chacun des systèmes suivants, en distinguant éventuellement des cas suivants les valeurs des paramètres :